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WILCZYNSKI 'S AND FUBINPS CANONICAL 
SYSTEMS OF D I F F E R E N T I A L EQUATIONS* 

BY E. P . LANE 

1. Introduction, The projective differential geometry of 
surfaces has been studied extensively in the United States 
by Wilczynski, Green, and others, using the invariants and 
covariants of a completely integrable system of linear homo
geneous partial differential equations. In Italy, much 
progress in projective differential geometry has been made 
by Fubini, Bompiani, and others, who have approached the 
subject from the point of view of differential forms and the 
absolute calculus. The normal coordinates of Fubini have 
been shown by him to be solutions of a canonical system of 
differential equations. It is the purpose of this note to show 
how Fubini's canonical differential equations may be ob
tained by Wilczynski's method, and to compare Wilczynski's 
and Fubini's canonical forms for the differential equations 
of a surface. 

It is evidently desirable that geometers living on different 
sides of the Atlantic, writing in different languages, 
and using different analytic apparatus, but interested in the 
same subject, should be able to exchange ideas freely. It 
is hoped that this note will to some extent smooth the way 
for this commerce of ideas by showing how certain equations 
and formulas obtained in one notation may be written also 
in the other. 

2. Analytic Foundation. Let the homogeneous coordinates 
y(X)y • • • , y

4) of a general point Py on a non-degenerate non-
developable surface Sy be given as analytic functions of two 
independent variables u, v. If Sy is referred to its asymptotic 

* Presented to the Society, April 2,1926. 
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net, the four functions y are solutions of a system of equa
tions* of the form 

+2ayu+2byv+cy = 0 , 

\ yvv+2a'yu+2b'yv+c'y = 0 . 

The coefficients of these two equations are functions of u, v, 
and satisfy four integrability conditions, of which the only 
one that we shall use is 

(2) av = b'u. 

This condition shows that there exists a function p such that 

(3) pu = a, pv = b'. 

All transformations of the group 

(4) y=\(u, v)y, ü=U(u), v=V(v) 

are without geometric significance. In particular, the trans
formation y=\y changes system (1) into another system of 
the same form whose coefficients are given by the following 
formulas : 

X M __ _ 1 f . 
a = a-\ , b = b , c — — (\uu+2à\u+2b\v + c\) , 

A A (5) 

a' = a' , b' = b'+ — , c' = — (\vv+2a'\u+2b'\v+c'))> 
X X 

3. Wilczynski's Canonical System. Wilczynski observes 
that we shall have d = b' = 0 if we choose X as a solution of 
the equations 

X w \v 

(6) — +pu = 0 , — +p„ = 0 . 
X X 

With this choice of X Wilczynski obtains for equations (1) 
the canonical form 

(w) [ yuu+2byv+fy = 0 , 

I yVv+2a'yu+gy = 0 , 

* Wilczynski, First memoir, TRANSACTIONS OF THIS SOCIETY, vol. 8 
(1907), pp. 233-260. 
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wherein ƒ and g are defined by the formulas 

(7) f = c-au-.a2_2bb'J g = c'-b[-b'2-2aa'. 

The canonical system (W) is characterized by the conditions 
a = b' = 0. The largest subgroup of the group of transforma
tions (4) that preserves the form of system (W) is 

(8) 3/ = const. y/y/V'V' , « = U(u) , v= V(v) . 

If the semi-covariant points y, yu> yvi yuv are used as 
vertices of a local tetrahedron of reference with a unit 
point suitably chosen, the local coordinates of a point x on 
Sy near Py are represented by the series* 

* i= l -£ /A« 2 -£gAf iH- • • • , 

x2 = Au — a'Av2+ • • • , 

(9) xs = Av-bAu2 + • • • , 

#4 = AuAv+ • • • . 

By means of these expansions the projective differential 
geometry of Sy in the neighborhood of Py has been ex
tensively studied. 

4. Fubini's Canonical System. Referring to equations (5), 
let us observe that we shall have 

, N 1 (â'b)u 1 (â'b)9 -, 
(10) — • =r-.+ <* = 0 , r + ' = 0 , 

2 â'b 2 a'b 
if we choose for X a solution of the equations 

X w 1 (a'b)u ^ \v 1 (a'b)v 

( 1 1 ) - — + * . + - — — = 0 , — +Pv+ -—-- = 0 . 
X l a b X 2 a 0 

With this choice of X we obtain for equations (1) the canoni
cal form 

(F) 

{a'b)u 
yUu~ —-—yu+2byv+(py = 0 , 

ab 

(a'b)v 

yvv + 2a'yu —yv+i/y = 0 , 
ab 

* Wilczynski, Second memoir', TRANSACTIONS OF THIS SOCIETY, vol. 9 
(1908), p. 98. 



368 E. P. LANE [July-Aug., 

wherein <p and \p are defined by the formulas 

(a'b)v 1 d2 

<p = c~au — a2—2bb' — b log (a'b) 
a'b 2 du2 

(12) 

i r (^ )u] 2 

+ 4 L a'b~~l ' 
(a'b)u 1 d2 

}p==c'-bv>-.b>2-2aa'-a'-—i l o g (a'b) 
a'b 2 dv2 

, (a'b)v^
2 i r ( ^ ) , i 2 

4 L a'ft J 

System (F) is equivalent to Fubini's canonical system. 
In fact Fubini shows* that his normal coordinates satisfy 
the equations 

yn = Py2+ny, y2* = yyi+vy, 

wherein subscripts indicate covariant differentiation with 
respect to the quadratic form 2j3ydu dv. In light of the well 
known formulas for covariant differentiation, we see that 
these equations are precisely the same as equations (F), 
provided that we place 

(13) j8= —26, y = -2a', n= -<p} v= -\p . 

The canonical system (F) is characterized by the conditions 

1 (a'b)u 1 (a'b)v 

(14) * = - — — , * ' = -2 a'b 2 a'b 

The largest subgroup of the group of transformations (4) 
that preserves the form of system (F) is 

(15) y — cy, ü=U(u), v = V(v), (c — const.). 

The effect of the most general transformation (15) on the 
coefficients of system (F) is given by the equations 

V' _ V' _ 1 _ 1 
(16) a' = a' , b = b . <p = <p , \p = \p . 
v / y'2 ' jj'2 ' £/ /2 7 '2 

* Fubini, Fondamenti di geometria proiettivo-differenziale di una super
ficiel, ATTI DEI LINCEI, (5), vol. 27 (1918), 2d semester, p. 45. 
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Therefore <p and \p, as well as a' and b, are invariants. More
over, it is evident that under this transformation the points 
yu>yv, Juv are covariant. A geometric description of these 
points and an interpretation of the invariants <p and \p will be 
furnished in Section 6. 

5. Transformation from System (W) to System (F). We 
shall now establish the transformation between the local tet
rahedron with vertices at the points ^ y ^ ^ ^ f o r W i l c z y n s k i ' s 
canonical system (W) and the local tetrahedron with vertices 
at the points y, yUj yv, yuv for Fubini's canonical system (F). 

In equations (9) let us replace ƒ and g by the expressions 
given in equations (7). Then, for convenience, let us multiply 
each of the series thus obtained by a common proportionality 
factor, namely, the power series for the function Y satisfying 
equations (6), 

1— a Au — bfAv + ^(a2 — au)Au2 + (ab' — av) AuAv 

+ ±(bf2-bf
v)Av2 + • • . . 

In this way we obtain the expansions 

ffi=l — aAu — b'Av+(a2+bb' — ^c)Au2+(abr — avAuAv) 

+ (b'2+aa'-±c')Av2+ • • • , 

(17) | x2 = Au-aAu2-b'AuAv-a'Av2+ • • • , 

#3= Av — bAu2 — aAuAv — b'Av2+ • • , 

#4= AuAv+ • • • . 

These series represent the coordinates of a point x on Sy near 
Py, in the notation of system (1), the tetrahedron of reference 
being the semi-covariant tetrahedron whose vertices are the 
points yj p, a, z\ the semi-covarients p, a, z being defined* by 
the equations 

p = yu+ax, a = yv-+b'x, z = yuv
Jtb'yu+ayv + (ab' +av)y. 

If a point has coordinates referred to the tetra
hedron y, p, cr, z and has coordinates referred to 

the tetrahedron y, yu, yv, yuv for system (1), then we have 

xi+X2p+xz<T+xéz = k(xiy+X2yu+xsyv+xAyuv)t 

* Wilczynski, First memoir, p. 248. 
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where k is a proportionality factor. Thus we obtain the 
following equations of transformation between these two tet
rahedrons : 

f Xi = Xi+ax2+b'x3+(ab'+av)xé, 

I x2 = x2 +bfXé , 

I X3= Xz -f-axi , 

I #4 = #4 • 

Using equations (17) and (18) we obtain then expansions for 
the coordinates of a point x on Sy near Pyi in the notation of 
system (1), the tetrahedron of reference being the tetrahe
dron y, yu, yv, yuv for system (1) : 

( £ i = l - \cAu2- \c'Av2+ • • , 

X2= Au — aAu2 — a'Av2Jr • • • , 
(19) 

£3= Av-bAu2-b'Av2+ • • • , 
[ Xi= AuAv-\- • • • . 

If in equations (19) we substitute for a and b' the expres
sions given by equations (14) and replace c, c' by <p, \f/ 
respectively, we obtain the coordinates of a point x on Sv near 
Pv in the notation of system (F), the tetrahedron of reference 
being the tetrahedron y, yu, yv, yuv for system (F). Equations 
(13) enable us to write the same coordinates in the notation 
actually used by Fubini. 

Therefore it is possible to pass from an equation in local 
coordinates based on system (W) to the corresponding equations 
based on system (F) by using in succession equations (7), (18), 
(14), and substituting <pfor c, yp for cf. 

6. Geometric Applications. In the notation of system (W) 
the equation of the quadric of Lie, or osculating* quadric, is 

2 
XiXé—X2X3+2afbx± = 0 . 

By the method of the preceding section the equation of this 

* Wilczynski, Second memoir, p. 82. 
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quadric in the notation of system (F) is found to be 

r i d 2 12 

(20) #1X4 — x2#3+ 2arb-\ log {a'b) X4 = 0 . 
L 2 dudv J 

Fubini, using system (F), has remarked* that the line join
ing the two points y and yuv is the projective normal. Green, 
using system (W), has called f the line joining the points y and 
z, where 

1 (a'b)v 1 (a'b)v 

I a 0 l a b 

the pseudo-normal. These two lines are easily shown to be 
the same by means of the transformation established in the 
preceding section. In fact, the local coordinates of Pz referred 
to the tetrahedron y, yu, yv, yuv for system (1) are found by 
equations (18) to be 

V 2 a'b 2 a'b J 

Equations (14) show that, for system (F), this point is on the 
line joining the points y and yuv. 

We are now in position to describe geometrically the points 
yu, Jv, yUv for system (F). A simple calculation based on 
equation (20) shows that the reciprocal polar of the projective 
normal, with respect to the quadric of Lie, crosses the tangent of 
the asymptotic v = const, at the point yu and crosses the tangent 
of the asymptotic u = const, at the point yv. Thus these points 
are characterized. In order to characterize the point yuv, we 
observe that the locus of the point yu, as u,v vary, is a surface 
covariant to Sv. The tangent at the point yu to the curve u = 
const, on the surface yu intersects the projective normal at the 
point yuv, as does also the tangent at the point yv to the curve 
v = const, on the surface yv. 

* Fubini, Alcuni risultati di geometria proiettivo-differenziale, ATTI DEI 
LINCEI , (5), vol. 32 (1923), 2d semester, p. 324. 

f Green, Memoir on the general theory of surfaces, TRANSACTIONS OF 
THIS SOCIETY, vol. 20 (1919), p. 126. 
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Inspection of system (F)reveals that the tangent at the point 
yu to the curve v = const, on the surface yu is the line yuyv if, and 
only if, <p = 0. Similarly, the tangent at the point yv to the curve 
u = const, on the surface yv is the line yuyv if, and only if, ^ = 0. 

We shall now determine the developables and focal surfaces 
of the congruence of lines yuyv reciprocal to the congruence of 
projective normals. Any point F on a line yuyv (except the 
point yv) is given by an expression of the form 

Y = yu+\yv . 

As Py moves along a curve v = v(u) on Sy, Py describes a curve. 
A point on the tangent of this curve is given by 

dv / dv\ / dv \ 
Y'=Yu+Yv — =(\+—)yuv+(4> + \—^)y+ ( )?«+( )*-

du \ du/ \ du J 

If Py is a focal point of the line yuyv and if the curve on Sy 

corresponds to a developable of the congruence of these lines, 
then we have 

dv dv 
X + — = 0 , *>+\—^ = 0 . 

du du 
Eliminating X, we obtain the differential equation of the 
developables of the congruence, 

(21) <pdu2-\l/dv2 = 0 . 

And eliminating dv/du, we obtain 

(22) $\2-<p = 0 . 

Solution of this quadratic determines the focal surfaces of the 
congruence. The significance of the simultaneous vanishing 
of <p and \f/ is thus made evident. 

7. Transformations from System (F) to System (W). If we 
have an equation in local coordinates based on system (F) and 
wish to find the corresponding equation based on the sytem 
(W) we may proceed as follows. Replacing <p and \p by the 
expressions given for them in equations (12), we obtain the 
corresponding equation in the notation of system (1), the 
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tetrahedron of reference being the covariant tetrahedron used 
with system (F). The vertices of this tetrahedron, besides 
Py, are the points p,a,z expressed in the notation of system 
(1) by the formulas 

, P = yu+(a-l3)y , a = yv + (b'-a)y , 
(2ó) {'"• •-yuv^b'-a)yu + (a-p)yv+[(a-p)(b'-a) + av-pv]y„ 

wherein we have placed 

, N 1 (o'b)v 1 {a'b)u 

(24) a-- 2 a'b 2 a'b 

If a point has coordinates referred to this tetrahe
dron y,p,<r,z and has coordinates referred to the 
tetrahedron % 3^,3^,3^ for system (1), we have the following 
equations of transformation : 

(x\ = xi+(a — /3)x2+(6' — a)xs+ [(a — fi)(b' — a) + av — pv]xt, 

\X2= x2 +(b' — a)x±, 

£3= #3 +(a — P)xt, 

(x4= Xt . 

(25) 

By means of this transformation we are able to find the equa
tion of the given locus in the notation of system (1) and 
referred to the tetrahedron y,yu,yv,yw for system (1). In order 
to obtain the desired equation, it only remains to place a = bf 

= 0 and to replace c,c' by f,g respectively. 
UNIVERSITY OF CHICAGO 


