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SOME THEOREMS CONCERNING 
MEASURABLE FUNCTIONS* 

BY L. M. GRAVESf 

Theorems on the measurability of functions of measurable 
functions, e. g., in the form F(x) = f[x, g(x)], have been 
given by Carathéodory and other writers.^ Our Theorem I 
is an easy generalization of the one given by Carathéodory 
on page 665, with a slightly different method of proof. 
Here the function ƒ(#, y) is supposed to be defined for 
all values of y. Our Theorem II merely applies Theorem I 
to certain cases when the function ƒ(#, y) is not defined for 
all values of y. In these theorems the variables x and y 
may be multipartite. Theorems I and II are still valid if, 
throughout, measurable is replaced by Borel measurable. 

In Theorem II I , we consider a summable function ƒ(x, y) 
of two variables, and show by means of Theorem I that 
the function of x alone 

I f(x,y)dy 

is also summable, under a suitable convention. 
Notations. In Theorems I and II we use the following 

abbreviated notations : The point (xi, • • • , Xk) in k-
dimensional space, we denote simply by x. The #-space 
as a whole is denoted by the German 96. We do similarly 
for the w-dimensional space §). When we have to speak 
of the (k+m)-dimensional space ($, §D), we may denote 

* Presented to the Society, April 2, 1926. 
t National Research Fellow in Mathematics. 
Î See Carathéodory, Vorlesungen uber réelle Funktionen,pp. 376,377,665; 

Hans Hahn, Theorie der reellen Funktionen, p. 556. 
Hobson, Theory of Functions of a Real Variable, 2d éd., vol. 1, p. 518. 
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it by 28. Corresponding to a set 3B(0) of points of the 
space SB and a point y of the space §), we denote by 
3£(î/) the set of all points x such that (x, y) *s l n SB(0). 
The sets §)(:c) are defined similarly. A set of m functions 
gi(*0> • • • > gm(#)> each single-real-valued on a set 3Ê(0) 

of the space 36, will be denoted simply by g{x), and called 
a function on 36(0) to §). This function is said to be measurable 
on 36(0) if each component is measurable. We denote by 
[y]a the closed neighborhood of the point y consisting of 
all those points y distant from y by not more than a. 

THEOREM I. Let 36(0) be a measurable set, and let f(x, y) 
be a single-real-valued function on 36(0)g) with the properties 
(1) ƒ is measurable on 36(0) for each y, and (2) ƒ is continuous 
in each argument y3', either on the right or on the left, when 
the other variables are fixed. Then if g{x) on 36(0) to §) is 
measurable on 36(0), so is the function f (x, g(x)). 

We take first the case m = 1, and assume (to fix the ideas) 
that ƒ is continuous on the left in y. We construct a se
quence {irn} of partitions of the y-axis, for example by 
taking the division points in Tn to be 

i 
Li = —, ( i = - o o , • • • , + oo). 

n 

Then the set H{ni) of points of the measurable set X(0) for 
which ln%^g{x) <Zn, i + 1, is measurable, and we have 

]T) # ( n i ) = 36(0) 

i 

for every n. We construct a sequence {gn(x)} of functions 
measurable on 36(0) and approaching g(x) from the left 
by setting gn(x)=lni on the set 36(ni). Hence the function 
f(x, gn(x)), which equals/(x, lni) on the set H{ni\ is measur
able on 36(wi), and therefore measurable on 36(0). Since ƒ is 
continuous on the left in y, we have lim f(x} gn(x)) =ƒ(#, g(#)), 
and the last named function is also measurable on X(0). 

We complete the proof by induction. By the theorem 
for m, f(x, g(x), ym+i) is measurable on 36(0) and continuous 
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(right or left) in ym+i. Hence, by the proof just given, 
f(x, g(x)f gm+i(x)) is measurable. 

THEOREM I I . Let the set SB(0) and the function f(x, y) 
single-real-valued on^0) be such that (1) for each y,fis measur
able in x on every measurable set contained in #(2/), and (2) 
for each x, ƒ is continuous on y in $)(xK Let 36(0) be a measur
able set, and let g(x) be a function on £(0) to g), which is measur
able on 36(0), and such that for a fixed positive number a, the 
neighborhood [g(x)]a is in $)(x) for every x. Then the function 
f(x, g(x)) is measurable on $ (0). 

Divide the space g) into a denumerable infinity of "cubes" 
g)0), with edges parallel to the axes of the space, and maxi
mum diameter less than or equal to the number a. Let 
ï 0 ) be the subset of £(0) on which g(x) is in the set §)0). 
Then each £('-) is measurable, being a product of measurable 
sets, and ^ ^ O ) = ï(0)- We consider hereafter only those 
values of j for which # 0 ) is not empty. Let yU) be the center 
of the "cube" g)<'\ Then for every x in £ ( / ) , the point g(x) 
is contained in the closed neighborhood [yU)]b (where 2& = a), 
and the neighborhood [yU)]b in turn is contained in the 
neighborhood [g(x)]a

 a n (^ hence in the set g)(a0. We can 
now define a function F(x, y) on 36<*7:> g), equal to f(x, y) on 
%w[yM]bt measurable on 3Ê(/) for every y, and continuous 
on g) for every x. E. g., for points y not in [yu)]b, set F(x, y) = 
f(x, yU)+c(y—yu))), where b = cX distance from y to yu\ 
Then by Theorem I, F(x, g(x)) =f(x, g(x)) is measurable 
on the set £ ( / ) . Hence/(x, g(x)) is measurable on 3E(0). 

In the proof of Theorem III , we shall need the following 
preliminary theorem. (We now drop the abbreviated 
notation of the preceding paragraphs.) 

Suppose the single-real-valued function f(x, y) is summable 
on the rectangle a^x^b, c^y^d. Then there exists a set 
@ of points of the interval (a, b) such that : 

(1) measure of (& = b — a; 
(2) the integral 

I f(*,y)dy = g(*,y) 
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exists for every x in the set (2 and every y in (c, d) ; 
(3) g(x, y) is measurable in x on (§, for every y\ 
(4) \g(x, y)\ SM(x) for every y, where M(x) is summable 

on S. 
When we take y — d% the statements of this theorem are 

at least implicitly contained in every treatment of the 
reduction of a double integral of a summable function to 
two successive simple integrals.* We obtain the theorem 
stated for a value y = yo<d by replacing ƒ (x, y) by a func
tion fo(x, y), equal to ƒ for c^y^yo, and zero for yo<y^d. 
I t is readily seen that the set (§ effective for y — d is effective 
for all values of y. To obtain the fourth conclusion, we have 

\g(x,y)\£ I \f(x,y)\dy£ I \f(x,y)\dy. 
«/ c *J c 

THEOREM III. Suppose the function f {x, y) is summable on 
the square a^x^b, a^y^b. Then there exists a set S of 
points of (a, 6), whose measure is (b — a), such that the function 

! 
f(x9y)dy 

is summable on @. 

By our preliminary theorem, the function 

g(x,y) = I f(x,y)dy 
J a 

is measurable in x on a set (S with the specified properties, 
and satisfies the condition \g(x, y)\SM{x)> where Mix) is 
summable on @. It is also continuous in y on (a, b). Hence 
we can extend the range of definition of the function g(x, y) 
so that the conditions of Theorem I will be satisfied. This, 
with the inequality \g(x, x)\^M(x), shows that g(x, x) is 
summable on @. 

* See de la Vallée Poussin, Intégrales de Lebesgue, pp. 50-53 ; or BUL
LETIN DE L'ACADÉMIE DE BELGIQUE, Sciences, 1910, p. 768. 
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Various modifications of Theorem III may easily be 
secured. For example, in case we make the additional 
assumptions that the function f(x, y) is bounded and is 
measurable in y for each xy then the set (S may be replaced 
by the interval (a, b). These additional assumptions are 
fulfilled in particular if ƒ is bounded and Borel measurable 
on the square where it is defined. In this case the function 
g(x, x) is Borel measurable on (a, b). As another modifica
tion we may substitute for the square a^x^b, a^y^b, a 
bounded measurable set @0@o, consisting of those points 
of the plane having x and y each in a linear measurable 
set So. Then the integral is understood to be taken over 
those points of the interval {a, x) contained in @o. 

HARVARD UNIVERSITY 

A GENERAL THEORY OF REPRESENTATION OF 
F I N I T E OPERATIONS AND RELATIONS* 

BY B. A. BERNSTEIN 

Let a mod n denote the least positive residue modulo n 
of an integer a, i. e., the least positive integer obtained 
from a by rejecting multiples of n. Consider the polynomials 
modulo a prime p 

(1) a0 + ai x + • • • + aP-itf
p~"1, mod p, 

(2) fo(x) +fi(x)y + • • • +fp-i(x)y»~\ mod p9 

where in (1) a» are least positive ^-residues and x ranges 
over the complete system of least positive ^-residues, and 
where (2) is a polynomial modulo p in y whose coefficients 
fi(x) are modular polynomials in x of form (1). In a previous 
paperf I developed a theory of representation of abstract 

* Presented to the Society, San Francisco Section, October 25, 1924. 
t PROCEEDINGS OF THE INTERNATIONAL MATHEMATICAL CONGRESS, 

TORONTO, 1924. 


