SOME THEOREMS CONCERNING MEASURABLE FUNCTIONS*

BY L. M. GRAVES \dagger

Theorems on the measurability of functions of measurable functions, e. g., in the form $F(x)=f[x, g(x)]$, have been given by Carathéodory and other writers. \ddagger Our Theorem I is an easy generalization of the one given by Carathéodory on page 665, with a slightly different method of proof. Here the function $f(x, y)$ is supposed to be defined for all values of y. Our Theorem II merely applies Theorem I to certain cases when the function $f(x, y)$ is not defined for all values of y. In these theorems the variables x and y may be multipartite. Theorems I and II are still valid if, throughout, measurable is replaced by Borel measurable.

In Theorem III, we consider a summable function $f(x, y)$ of two variables, and show by means of Theorem I that the function of x alone

$$
\int_{a}^{x} f(x, y) d y
$$

is also summable, under a suitable convention.
Notations. In Theorems I and II we use the following abbreviated notations: The point (x_{1}, \cdots, x_{k}) in k dimensional space, we denote simply by x. The x-space as a whole is denoted by the German \mathfrak{X}. We do similarly for the m-dimensional space \mathfrak{V}. When we have to speak of the $(k+m)$-dimensional space $(\mathfrak{X}, \mathfrak{Y})$, we may denote

[^0]it by \mathfrak{W}. Corresponding to a set $\mathfrak{W}^{(0)}$ of points of the space \mathfrak{W} and a point y of the space \mathscr{V}, we denote by $\mathfrak{X}^{(y)}$ the set of all points x such that (x, y) is in $\mathfrak{W}^{(0)}$. The sets $\mathfrak{V}^{(x)}$ are defined similarly. A set of m functions $g_{1}(x), \cdots, g_{m}(x)$, each single-real-valued on a set $\mathfrak{X}^{(0)}$ of the space \mathfrak{X}, will be denoted simply by $g(x)$, and called a function on $\mathfrak{X}^{(0)}$ to \mathfrak{V}. This function is said to be measurable on $\mathfrak{X}^{(0)}$ if each component is measurable. We denote by $[y]_{a}$ the closed neighborhood of the point y consisting of all those points \bar{y} distant from y by not more than a.

Theorem I. Let $\mathfrak{X}^{(0)}$ be a measurable set, und let $f(x, y)$ be a single-real-valued function on $\mathfrak{X}^{(0)} \mathfrak{Y}$ with the properties (1) f is measurable on $\mathfrak{X}^{(0)}$ for each y, and (2) f is continuous in each argument y_{j}, either on the right or on the left, when the other variables are fixed. Then if $g(x)$ on $\mathfrak{X}^{(0)}$ to \mathfrak{Y} is measurable on $\mathfrak{X}^{(0)}$, so is the function $f(x, g(x))$.

We take first the case $m=1$, and assume (to fix the ideas) that f is continuous on the left in y. We construct a sequence $\left\{\pi_{n}\right\}$ of partitions of the y-axis, for example by taking the division points in π_{n} to be

$$
l_{n i}=\frac{i}{n}, \quad(i=-\infty, \cdots,+\infty)
$$

Then the set $\mathfrak{X}^{(n i)}$ of points of the measurable set $\mathfrak{X}^{(0)}$ for which $l_{n i} \leqq g(x)<l_{n}, i+1$, is measurable, and we have

$$
\sum_{i} \mathfrak{X}^{(n i)}=\mathfrak{X}^{(0)}
$$

for every n. We construct a sequence $\left\{g_{n}(x)\right\}$ of functions measurable on $\mathfrak{X}^{(0)}$ and approaching $g(x)$ from the left by setting $g_{n}(x)=l_{n i}$ on the set $\mathfrak{X}^{(n i)}$. Hence the function $f\left(x, g_{n}(x)\right)$, which equals $f\left(x, l_{n i}\right)$ on the set $\mathfrak{X}^{(n i)}$, is measurable on $\mathfrak{X}^{(n i)}$, and therefore measurable on $\mathfrak{X}^{(0)}$. Since f is continuous on the left in y, we have $\lim f\left(x, g_{n}(x)\right)=f(x, g(x))$, and the last named function is also measurable on $\mathfrak{X}^{(0)}$.

We complete the proof by induction. By the theorem for $m, f\left(x, g(x), y_{m+1}\right)$ is measurable on $\mathfrak{X}^{(0)}$ and continuous
(right or left) in y_{m+1}. Hence, by the proof just given, $f\left(x, g(x), g_{m+1}(x)\right)$ is measurable.

Theorem II. Let the set $\mathfrak{W}^{(0)}$ and the function $f(x, y)$ single-real-valued on $\mathfrak{W}^{(0)}$ be such that (1) for each y, f is measurable in x on every measurable set contained in $\mathfrak{X}^{(y)}$, and (2) for each x, f is continuous on y in $\mathfrak{V}^{(x)}$. Let $\mathfrak{X}^{(0)}$ be a measurable set, and let $g(x)$ be a function on $\mathfrak{X}^{(0)}$ to \mathfrak{Y}, which is measurable on $\mathfrak{X}^{(0)}$, and such that for a fixed positive number a, the neighborhood $[g(x)]_{a}$ is in $\mathfrak{Y}^{(x)}$ for every x. Then the function $f(x, g(x))$ is measurable on $\mathfrak{X}^{(0)}$.

Divide the space \mathfrak{Y} into a denumerable infinity of "cubes" $\mathfrak{Y}^{(j)}$, with edges parallel to the axes of the space, and maximum diameter less than or equal to the number a. Let $\mathfrak{X}^{(j)}$ be the subset of $\mathfrak{X}^{(0)}$ on which $g(x)$ is in the set $\mathfrak{Y}^{(j)}$. Then each $\mathfrak{X}^{(j)}$ is measurable, being a product of measurable sets, and $\sum \mathfrak{X}^{(j)}=\mathfrak{X}^{(0)}$. We consider hereafter only those values of j for which $\mathfrak{X}^{(j)}$ is not empty. Let $y^{(j)}$ be the center of the "cube" $\mathfrak{Y}^{(j)}$. Then for every x in $\mathfrak{X}^{(j)}$, the point $g(x)$ is contained in the closed neighborhood $\left[y^{(j)}\right]_{b}$ (where $2 b=a$), and the neighborhood $\left[y^{(j)}\right]_{b}$ in turn is contained in the neighborhood $[g(x)]_{a}$ and hence in the set $\mathfrak{Y}^{(x)}$. We can now define a function $F(x, y)$ on $\mathfrak{X}^{(j)} \mathfrak{Y}$, equal to $f(x, y)$ on $\mathfrak{X}^{(j)}\left[y^{(j)}\right]_{b}$, measurable on $\mathfrak{X}^{(j)}$ for every y, and continuous on \mathfrak{V} for every x. E. g., for points y not in $\left[y^{(j)}\right]_{b}$, set $F(x, y)=$ $f\left(x, y^{(j)}+c\left(y-y^{(j)}\right)\right)$, where $b=c \times$ distance from y to $y^{(j)}$. Then by Theorem I, $F(x, g(x))=f(x, g(x))$ is measurable on the set $\mathfrak{X}^{(j)}$. Hence $f(x, g(x))$ is measurable on $\mathfrak{X}^{(0)}$.

In the proof of Theorem III, we shall need the following preliminary theorem. (We now drop the abbreviated notation of the preceding paragraphs.)

Suppose the single-real-valued function $f(x, y)$ is summable on the rectangle $a \leqq x \leqq b, c \leqq y \leqq d$. Then there exists a set © of points of the interval (a, b) such that:
(1) measure of $\mathfrak{C}=b-a$;
(2) the integral

$$
\int_{c}^{y} f(x, y) d y=g(x, y)
$$

exists for every x in the set \mathbb{F} and every y in (c, d);
(3) $g(x, y)$ is measurable in x on \mathfrak{F}, for every y;
(4) $|g(x, y)| \leqq M(x)$ for every y, where $M(x)$ is summable on \mathfrak{F}.

When we take $y=d$, the statements of this theorem are at least implicitly contained in every treatment of the reduction of a double integral of a summable function to two successive simple integrals.* We obtain the theorem stated for a value $y=y_{0}<d$ by replacing $f(x, y)$ by a function $f_{0}(x, y)$, equal to f for $c \leqq y \leqq y_{0}$, and zero for $y_{0}<y \leqq d$. It is readily seen that the set \mathbb{F} effective for $y=d$ is effective for all values of y. To obtain the fourth conclusion, we have

$$
|g(x, y)| \leqq \int_{c}^{y}|f(x, y)| d y \leqq \int_{c}^{y}|f(x, y)| d y
$$

Theorem III. Suppose the function $f(x, y)$ is summable on the square $a \leqq x \leqq b, a \leqq y \leqq b$. Then there exists a set \mathbb{E} of points of (a, b), whose measure is $(b-a)$, such that the function

$$
\int_{a}^{x} f(x, y) d y
$$

is summable on \mathbb{E}.
By our preliminary theorem, the function

$$
g(x, y)=\int_{a}^{y} f(x, y) d y
$$

is measurable in x on a set \mathfrak{E} with the specified properties, and satisfies the condition $|g(x, y)| \leqq M(x)$, where $M(x)$ is summable on ©. It is also continuous in y on (a, b). Hence we can extend the range of definition of the function $g(x, y)$ so that the conditions of Theorem I will be satisfied. This, with the inequality $|g(x, x)| \leqq M(x)$, shows that $g(x, x)$ is summable on \mathfrak{F}.

[^1]Various modifications of Theorem III may easily be secured. For example, in case we make the additional assumptions that the function $f(x, y)$ is bounded and is measurable in y for each x, then the set ๒ may be replaced by the interval (a, b). These additional assumptions are fulfilled in particular if f is bounded and Borel measurable on the square where it is defined. In this case the function $g(x, x)$ is Borel measurable on (a, b). As another modification we may substitute for the square $a \leqq x \leqq b, a \leqq y \leqq b$, a bounded measurable set $\xi_{0} \S_{0}$, consisting of those points of the plane having x and y each in a linear measurable set \mathbb{E}_{0}. Then the integral is understood to be taken over those points of the interval (a, x) contained in \mathscr{E}_{0}.

Harvard University

A GENERAL THEORY OF REPRESENTATION OF FINITE OPERATIONS AND RELATIONS*

BY B. A. BERNSTEIN

Let $a \bmod n$ denote the least positive residue modulo n of an integer a, i. e., the least positive integer obtained from a by rejecting multiples of n. Consider the polynomials modulo a prime p

$$
\begin{gather*}
a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1}, \bmod p \tag{1}\\
f_{0}(x)+f_{1}(x) y+\cdots+f_{p-1}(x) y^{p-1}, \bmod p
\end{gather*}
$$

where in (1) a_{i} are least positive p-residues and x ranges over the complete system of least positive p-residues, and where (2) is a polynomial modulo p in y whose coefficients $f_{i}(x)$ are modular polynomials in x of form (1). In a previous paper \dagger I developed a theory of representation of abstract

[^2]
[^0]: * Presented to the Society, April 2, 1926.
 \dagger National Research Fellow in Mathematics.
 \ddagger See Caratheodory, Vorlesungen über reelle Funktionen, pp. 376,377,665; Hans Hahn, Theorie der reellen Funktionen, p. 556. Hobson, Theory of Functions of a Real Variable, 2d ed., vol. 1, p. 518.

[^1]: * See de la Vallée Poussin, Intégrales de Lebesgue, pp. 50-53; or BuLletin de l'Academie de Belgique, Sciences, 1910, p. 768.

[^2]: * Presented to the Society, San Francisco Section, October 25, 1924.
 \dagger Proceedings of the International Mathematical Congress, Toronto, 1924.

