ON A PROBLEM IN CLOSURE*

BY VIRGIL SNYDER

The following note concerns finite groups of birational transformations which leave an algebraic curve of genus 1 invariant.

Let the curve be expressed as a C_{4} in S_{3}, intersection of two general quadric surfaces. This curve is invariant under the linear group G_{8}, of order eight, generated by the harmonic homologies defined by the self-conjugate tetrahedron associated with C_{4}. The points of C_{4} are thus arranged in sets of 8 , forming a linear $I_{8}{ }^{1}$ of genus 0 . If the curve be projected upon a plane from an arbitrary point, a plane quartic C_{4} results with nodes at K_{1}, K_{2}. The four central homologies become four perspective quadratic involutions T_{i} with centers O_{i} not on C_{4}; the three axial involutions become three non-perspective quadratic inversions, with fundamental points $O_{i k}$ for $T_{i} T_{k}=$ $T_{k} T_{i}=T_{k i}=T_{l m}$ at the diagonal points of the quadrangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$. The nodes K_{1}, K_{2} are the other fundamental points for all seven operations. \dagger

From the theorem of Bertini it follows that in any plane nodal quartic one and only one conic can be found meeting

[^0]any line through the node in two points which form with the residual intersections of the line and the quartic a harmonic set. Using this conic as conic of invariant points and the node as center in a perspective quadratic inversion, the quartic is transformed into itself. In case there are two nodes there is a conic of Bertini associated with each, and the conic associated with one node passes through the other. Let these operations be denoted by S_{1}, S_{2}. In a recent memoir* the question is raised whether the group generated by S_{1}, S_{2} and G_{8} can be finite, but the author does not answer it. The answer may be difficult if the method is restricted to pure geometry. By assistance of the parametric representation in terms of elliptic functions it can be answered in every case.

Let

$$
F=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-x_{4}^{2}=0, \quad \sum a_{i} x_{i}^{2}=0
$$

define the curve. The tetrahedron of reference is the selfconjugate tetrahedron of the pencil of quadrics, and the equations of the harmonic homology H_{1} with center at vertex ($1,0,0,0$), invariant plane $x_{1}=0$, are $p x_{1}^{\prime}=-x_{1}, p x_{i}{ }^{\prime}=x_{i}$, $i=2,3,4$; similarly for H_{2}, H_{3}, H_{4}.

By projecting $F=0$ upon $x_{4}=0$ from (1, 1, 1, 1), the operation H_{1} becomes the perspective inversion

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=\left(x_{2}-x_{3}\right)\left(x_{1}-x_{2}-x_{3}\right) \tag{1}\\
x_{2}^{\prime}=x_{2}\left(x_{1}-x_{2}+x_{3}\right) \\
x_{8}^{\prime}=x_{3}\left(x_{1}+x_{2}-x_{3}\right)
\end{array}\right.
$$

The center is $O_{1}=(1,0,0)$, and the other fundamental points are

$$
K_{1}=(0,1,1), \quad K_{2}=(1,1,0)
$$

The conic of invariant points is

$$
\left(x_{1}-x_{2}\right)^{2}+2 x_{1} x_{3}-x_{3}^{2}=0
$$

[^1]Similar expressions exist for $T_{i}, i=2,3,4$, and for $T_{i k}, O_{4}=$ ($1,1,1$). The triangle formed by any three of the points $O_{i} O_{k} O_{l}$ is self-conjugate as to the conic of invariant points associated with the fourth.*

Among the space quartics belonging to the same selfconjugate tetrahedron are ∞^{1} through the center of projection. This pencil is projected into a pencil of plane cubics through K_{1}, K_{2}, the four vertices $O_{1}, O_{2}, O_{3}, O_{4}$, and the three diagonal points $O_{i k}$. Hence by suppressing any side of the quadrangle, the four remaining basis points and K_{1}, K_{2} lie on a conic.

The equation can be reduced to the form

$$
k_{1} x_{1}\left(x_{2}-x_{3}\right)\left(x_{2}+x_{3}-x_{1}\right)+k_{2} x_{2}\left(x_{3}-x_{1}\right)\left(x_{1}-x_{2}+x_{3}\right)=0 .
$$

The points K_{1}, K_{2} form a pair of conjugate points in the Geiser net determined by the other seven basis points. The line joining them meets any C_{3} of the pencil in just one point, which with the seven basis points makes a group of I_{8} on that curve. Any position on C_{3} can be chosen for one of them, and then the other is uniquely fixed.

The points O_{i} are all cotangential, and any one of them can be assumed at will. The fundamental points $O_{i k}$ are collinear with $O_{i} O_{k}$ and with $O_{l} O_{m}$. Associated with any point P on C_{3} are the points of tangency of the four tangents from P. The other three from the first tangential of P have their points of contact at $O_{i k}$. Expressed in parametric form, assuming the form to which every elliptic cubic can be reduced, that three points are collinear when the sum of their parameters is congruent to zero, then if P has the parameter u, we have

$$
\begin{gathered}
O_{1}=-\frac{u}{2}, \quad O_{2}=-\frac{u}{2}+\omega, \quad O_{3}=-\frac{u}{2}+\omega^{\prime} \\
O_{4}=-\frac{u}{2}+\omega+\omega^{\prime}, \quad O_{12}=u+\omega, \quad O_{13}=u+\omega^{\prime} \\
O_{14}=u+\omega+\omega^{\prime}
\end{gathered}
$$

[^2]Let K_{1} have the parameter v; then K_{2} has the parameter $-u-v$. A conic through K_{1} and through the four points remaining of the seven basis points when three on any line have been suppressed will also pass through K_{2}.

The involution in which K_{1}, K_{2} are a pair of conjugate points is that having the polar conic at P for conic of invariant points, and P for vertex.

If K_{1}, K_{2} be regarded as fixed, then a cubic of the pencil is fixed by its residual intersection with K_{1}, K_{2}. Since $P_{1} K_{1}$ can be chosen at will and satisfy all the conditions of the problem it follows that the group generated by K_{1}, O_{1} is generally of infinite order. If finite, K_{1}, G_{8} is also finite.

Since P can be chosen at will on C_{3} and K_{1} can be chosen at will, there are ∞^{2} groups of I_{8} in the plane. As groups of operations there appear in sets of pencils, those of any set (O_{i} on any curve of the pencil) having the three operations $T_{i k}$ in common, so far as the transformations of points on the curve are concerned.

These results can be interpreted in terms of C_{4} in space directly. By an appropriate linear transformation we may write*

$$
x_{1}=\sigma_{1}(2 u), \quad x_{2}=\sigma_{2}(2 u), \quad x_{3}=\sigma_{3}(2 u), \quad x_{4}=\sigma(2 u),
$$

the σ_{i} being those defined in the Schwarz-Weierstrass Formeln und Lehrsätze, pp. 21-2.

Four points with parameters u_{1}, \cdots, u_{4} are collinear if $\Sigma u_{i}=0$. The operations of G_{8} are defined as follows:

$$
\begin{array}{ll}
u^{\prime}=-u+a+\omega^{\prime} & \text { is } H_{1}, \\
u^{\prime}=-u+\omega^{\prime} & \text { is } H_{2}, \\
u^{\prime}=-u+\omega & \text { is } H_{3}, \\
u^{\prime}=-u & \text { is } H_{4},
\end{array}
$$

from which the $H_{i k}$ at once follow.
A quadric of the pencil through C passes through any given point P. The quadric contains a generator of each system,

[^3]through P, each meeting C_{4} twice. If this quadric be projected stereographically from P, the plane quadric will have a double point at K_{1} on one generator and at K_{2} on the other. Consider the line $P K_{1}$. It contains P_{1}, P_{2} on C_{4} and any plane through $P K_{1}$ meets C_{4} in two points P_{3}, P_{4} which project into two points collinear with K_{1}. These points are interchanged by S_{1}, hence in space we may choose u_{1} and u_{2} at will, then pass a plane through the points determined by them and any third point u_{3}. The space operation consists in interchanging the point u_{3} with the fourth point u_{4} as the plane turns about $u_{1} u_{2}$, as u_{3} describes C_{4}.

The operation has the form

$$
u^{\prime}=-u+c
$$

where c is any given constant. If this be associated with H_{i} the product is not periodic unless c is of the form $r \omega+r^{\prime} \omega^{\prime}$ wherein r, r^{\prime} are both rational. But if this product is rational, then the group generated by S and G_{8} is finite. The operation S_{2} is defined by

$$
u^{\prime}=-u-c,
$$

hence the necessary and sufficient condition that S_{1}, S_{2}, G_{8} generate a finite group is that S_{1}, S_{2} generate a finite group.

Cornell University

[^0]: * Presented to the Society, September 8, 1926.
 \dagger A brief synthetic outline of the properties of G_{8} was first given by C. Segre, Su una trasformazione irrazionale dello spazio . . . , Giornale di Matematiche, vol. 21 (1883), pp. 355-378. This was amplified in connection with a larger problem by D. Montesano, Su alcuni gruppi chiusi di trasformazioni involutorie nel piano e nello spazio, Atti Istituto Veneto, (6), vol. 6 (1888), pp. 1425-1444. It is also contained in the papers by K. Meister, Ueber die Systeme, welche durch Kegelschnitte mit einem gemeinsamen Polardreieck, bez. durch Flächen zweiten Grades mit einem gemeinsamen Polartetraeder gebildet werden, Zeitschrift der Mathematik und Physik, vol. 31 (1886), pp. 321-347; vol. 34 (1889), pp. 6-24; 73-91 and by H. E. Timerding, Ueber die quadratische Transformation durch welche die Ebenen des Raumes in ein System von Flächen zweiter Ordnung mit gemeinsamen Poltetraeder übergeführt werden, Annali di Matematica, (3), vol. 1 (1898), pp. 95-117.

[^1]: * E. Ciani, Le quartiche piane invertibili, Giornale di Matematiche, vol. 57 (1919), 47 pages.

[^2]: * The equations of the operations of the group and those of an ∞^{2} family of binodal quartics each invariant under it were determined in my seminar by Miss Bertha I. Hart, of Western Maryland College.

[^3]: * E. Lange, Die sechzehn Wendeberührungspunkte der Raumcurve vierter Ordnung, erster Species, Schlömilchs Zeitschrift, vol. 28 (1883), pp. 1-23.

