A THEOREM CONCERNING DIRECT PRODUCTS*

BY LOUIS WEISNER \dagger

The theorem in question may be stated as follows. A group of order $m n$, where m and n are relatively prime, in which every element whose order divides m is commutative with every element whose order divides n, is the direct product of two groups of orders m and n.

Burnside \ddagger has proved the theorem for the special case in which either m or n is a power of a prime. Hence, to prove the theorem, we need only show that it is true for groups of order $m n$ if it is true for groups of order <mn. To avoid trivial cases we assume that m and $n>1$. We denote by m_{1}, m_{2}, and n_{1}, n_{2}, divisors >1 of m and n respectively.

If the group G contains an element of order m, let p be a prime factor of m and p^{α} the highest power of p that divides m. Every element of G whose order divides p^{α} is commutative with every element whose order is prime to p. It follows from the special case referred to, that G contains an invariant subgroup of order $m n / p^{\alpha}$, which contains an invariant subgroup of order n, as every element whose order divides m / p^{α} is commutative with every element whose order divides n.

We suppose now that G contains no element of order m. The normaliser H of an element s of order m_{1} includes all the Sylow subgroups of G whose orders divide n, and is therefore of order $m_{2} n$, where $m_{2} \geqq m_{1}$. If $m_{2}<m, H$ contains an invariant subgroup of order n. If $m_{2}=m, s$ is invariant under G. An element t of G corresponding to an element t^{\prime} of $G /(s)$ of order n_{1} is of order $n_{1} \mu$, where μ divides m_{1}. Hence G contains§ two elements t_{1} and s_{1} of orders n_{1} and μ respectively, such that

[^0]$t=t_{1} s_{1}$. Since $\left(t_{1} s_{1}\right)^{n_{1}}=s_{1}{ }_{1}$ is in (s), and n_{1} is prime to the order of s_{1}, s_{1} is a power of s. Thus t_{1}, as well as t, corresponds to t^{\prime} in the isomorphism of G with $G /(s)$; but t_{1} and t^{\prime} are of the same order n_{1}. Every element of $G /(s)$ whose order is a divisor of m / m_{1} corresponds to an element of G whose order is a divisor of m. It follows that t^{\prime}, and hence every element of $G /(s)$ whose order divides n, is commutative with every element whose order divides m / m_{1}. Hence $G /(s)$, being of order $<m n$, contains an invariant subgroup of order n. The corresponding subgroup of G, being of order $m_{1} n<m n$, also contains an invariant subgroup of order n.

Thus in all cases G contains a subgroup of order n. Similarly G contains a subgroup of order $m . G$ is evidently the direct product of these two subgroups.

Harvard University

A CUBIC CURVE CONNECTED WITH TWO TRIANGLES

BY H. BATEMAN

1. Introduction. If $A B C, X Y Z$ are two triangles, a cubic curve Γ_{3} may be associated with them as follows.* Let $(P Q, R S)$ denote the point of intersection of the lines $P Q, R S$; then Γ_{3} is the locus of a point O such that $(O A, Y Z),(O B, Z X)$, ($O C, X Y$) are collinear and also the locus of a point O for which $(O X, B C),(O Y, C A),(O Z, A B)$ are collinear. In fact when one set of three points is collinear the other set of three is also collinear. Take $A B C$ as triangle of reference and let the points X, Y, Z have coordinates $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)$, (z_{1}, z_{2}, z_{3}) respectively, then if (α, β, γ) are current coordinates
[^1]
[^0]: * Presented to the Society, October 30, 1926.
 \dagger National Research Fellow.
 \ddagger W. Burnside, Theory of Groups, 2d edition, p. 327.
 § Loc. cit., p. 16.

[^1]: * H. Grassmann, Die lineale Ausdehnungslehre, 1844, p. 226. The corresponding quartic surface connected with two tetrahedra is mentioned by H. Fritz, Pr. Ludw. Gymn. Darmstadt [reference taken from Jahrbuch der Fortschritte der Mathematik, vol. 21 (1889), p. 725] and by C. M. Jessop, Quartic Surfaces, Cambridge, 1916, p. 189.

