ON SMALL DEFORMATIONS OF CURVES

BY C. E. WEATHERBURN

1. Introduction. This paper is concerned with small deformations of a single tortuous curve, of a family of curves on a given surface, and of a congruence of curves in space. In all cases, the displacement s is supposed to be a small quantity of the first order, quantities of higher order being negligible.*
2. Single Twisted Curve. Consider first a given curve in space. The position vector r of a point on the curve may be regarded as a function of the arc-length s of the curve, measured from a fixed point on it. Let t, n, b be the unit tangent, principal normal and binormal. These are connected with the curvature κ and the torsion τ as in the Serret-Frenet formulas. Imagine a small deformation of the curve, such that the point of the curve originally at \boldsymbol{r} suffers a small displacement s, its new position vector \boldsymbol{r}_{1} being then

$$
\begin{equation*}
\boldsymbol{r}_{1}=\boldsymbol{r}+\mathrm{s} . \tag{1}
\end{equation*}
$$

Let a suffix unity be used to distinguish quantities belonging to the deformed curve, and let primes denote differentiations with respect to the arc-length s. Then the element $d r_{1}$ of the deformed curve, corresponding to the element $d \boldsymbol{r}$ of the original, is given by $d \boldsymbol{r}_{1}=d \boldsymbol{r}+d \boldsymbol{s}$, and its length $d s_{1}$ by

$$
\left(d s_{1}\right)^{2}=\left(d \boldsymbol{r}_{1}\right)^{2}=(d \boldsymbol{r})^{2}+2 d \boldsymbol{r} \cdot d \mathbf{s}=d s^{2}\left(1+2 \boldsymbol{t} \cdot \mathbf{s}^{\prime}\right)
$$

Consequently $d s_{1}=d s\left(1+t \cdot s^{\prime}\right)$.
The quantity $t \cdot s^{\prime}$ represents the increase of length per unit length of the curve, or the extension of the curve at

[^0]the point considered. Let it be denoted by ϵ. Then
\[

$$
\begin{equation*}
d s_{1}=d s(1+\epsilon) ; \quad d s=d s_{1}(1-\epsilon) \tag{2}
\end{equation*}
$$

\]

The unit tangent t_{1} to the deformed curve is given by

$$
\begin{equation*}
\boldsymbol{t}_{1}=\frac{d \boldsymbol{r}_{1}}{d s_{1}}=(1-\epsilon)\left(\boldsymbol{r}^{\prime}+s^{\prime}\right)=(1-\epsilon) t+s^{\prime} . \tag{3}
\end{equation*}
$$

Consequently, if κ_{1} is the curvature and n_{1} the unit principal normal for the new curve,

$$
\kappa_{1} n_{1}=\frac{d t_{1}}{d s_{1}}=(1-\epsilon) \frac{d t_{1}}{d s}=(1-2 \epsilon)_{\kappa n}-\epsilon^{\prime} t+s^{\prime \prime} .
$$

On "squaring" both members, and neglecting small quantities of the second order, we have

$$
\kappa_{1}^{2}=(i-4 \epsilon) \kappa^{2}+2 \kappa n \cdot s^{\prime \prime},
$$

and therefore

$$
\begin{equation*}
\kappa_{1}=(1-2 \epsilon) \kappa+n \cdot s^{\prime \prime} . \tag{4}
\end{equation*}
$$

Inserting this value in the above product $\kappa_{1} n_{1}$ we find

$$
\left\{\begin{align*}
n_{1} & =n-\frac{1}{\kappa}\left(\left(n \cdot s^{\prime \prime}\right) n+\epsilon^{\prime} t-s^{\prime \prime}\right) \tag{5}\\
& =n-\left(n \cdot s^{\prime}\right) t+\frac{1}{\kappa}\left(b \cdot s^{\prime \prime}\right) b .
\end{align*}\right.
$$

The unit binormal b to the deformed curve is then given by

$$
\left\{\begin{align*}
b_{1} & =t_{1} \times n_{1}=(1-\epsilon) b+s^{\prime} \times n-\frac{1}{\kappa}\left(b \cdot s^{\prime \prime}\right) n \tag{6}\\
& =b-\left(b \cdot s^{\prime}\right) t-\frac{1}{\kappa}\left(b \cdot s^{\prime \prime}\right) n
\end{align*}\right.
$$

The torsion τ_{1} may then be found by differentiating the unit binormal, using the Serret-Frenet formulas. Thus on differentiating (6), and using the preceding results, we find on reduction

$$
\begin{equation*}
\tau_{1}=(1-\epsilon) \tau+\kappa b \cdot s^{\prime}+\frac{d}{d s}\left(\frac{1}{\kappa} b \cdot s^{\prime \prime}\right) . \tag{7}
\end{equation*}
$$

We have thus determined the geometric characteristics of the deformed curve in terms of those of the original curve and the small displacement s. The rectangular trihedron, consisting of the unit tangent, the principal normal, and the binormal, undergoes a small rotation which is represented by the vector

$$
\begin{equation*}
R=\frac{1}{\kappa}\left(b \cdot s^{\prime \prime}\right) t-\left(b \cdot s^{\prime}\right) n+\left(n \cdot s^{\prime}\right) b \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
R=\frac{1}{\kappa}\left(b \cdot s^{\prime \prime}\right) t+t \times s^{\prime} . \tag{9}
\end{equation*}
$$

The coefficients of t, n, b in (8) represent the small rotations of the trihedron about the tangent, the principal normal, and the binormal, respectively.

An inextensional deformation of the curve is one for which ϵ vanishes identically.* If s is expressed in the form

$$
s=P t+Q n+R b
$$

the vanishing of $t \cdot s^{\prime}$ gives $P^{\prime}=\kappa Q$ as the necessary and sufficient condition for inextensional deformation.
3. Family of Curves on a Surface. Consider next a family of curves on a given surface. Suppose that the curves of the family suffer a small deformation such that they remain on the same surface. Then the displacement s at any point is tangential to the surface, and is a function of two parameters that specify the point considered. On any one curve s is a function of the arc-length s, and the formulas found above hold for the deformed curve.

Other results may be very neatly expressed in terms of the two-parametric differential invariants for the surface, introduced and examined by the author in a recent paper On differential invariants in geometry of surfaces. \dagger If ϕ is the value of any function associated with the deformed curve at the point $r+s$, the new value of this function at

[^1]the point \boldsymbol{r} originally occupied by this point of the curve is $\phi-\boldsymbol{s} \cdot \nabla \phi$, where ∇ is the two-parametric differential operator for the surface. Thus after the deformation the unit tangent \bar{t} to the new curve through the point \boldsymbol{r} is, by (3),
\[

\left\{$$
\begin{align*}
\bar{t} & =t_{1}-s \cdot \nabla t_{1}=(1-\epsilon) t+t \cdot \nabla s-s \cdot \nabla t \tag{10}\\
& =(1-\epsilon) t+\operatorname{curl}(s \times t)-s \operatorname{div} t+t \operatorname{div} s .
\end{align*}
$$\right.
\]

We have shown elsewhere* that the line of striction of a family of curves with unit tangent t is given by div $t=0$. Hence the line of striction of the deformed family has for its equation div $\bar{t}=0$, which may be expressed in the form

$$
\begin{equation*}
(1-\epsilon) \operatorname{div} t-t \cdot \nabla \epsilon-s \cdot \nabla \operatorname{div} t+\boldsymbol{t} \cdot \nabla \operatorname{div} s=0 \tag{11}
\end{equation*}
$$

since the divergence of the curl of the normal vector $s \times t$ vanishes identically. \dagger
If the original family of curves is one of parallels, div t vanishes identically. \ddagger Hence a family of parallels will remain parallels after the deformation provided

$$
\begin{equation*}
t \cdot \nabla(\epsilon-\operatorname{div} s)=0 \tag{12}
\end{equation*}
$$

The geodesic curvature of a curve of the original family§ is $\boldsymbol{n} \cdot$ curl t, and that of one of the deformed curves is

$$
n \cdot \operatorname{curl}[(1-\epsilon) t+t \cdot \nabla s-s \cdot \nabla t] .
$$

If then the family of curves is a family of geodesics, it will remain so after the deformation provided

$$
n \cdot[t \times \nabla \epsilon+\operatorname{curl}(t \cdot \nabla s-s \cdot \nabla t)]=0 .
$$

Similarly, the original family will be lines of curvature \| if t curl $t=0$; and they will remain lines of curvature after the change provided $\bar{t} \cdot \operatorname{curl} \bar{t}=0$.

[^2]4. Congruence of Curves in Space. Consider finally a small deformation of a congruence of curves in three dimensions. On any one curve the displacement s is a function of a single parameter; but on the congruence it is a point-function in space. Let ∇ now represent the threeparametric differential operator for three dimensions. Then the extension ϵ is $\epsilon=t \cdot s^{\prime}=t \cdot(\nabla s) \cdot t$, and, by the same argument as above, the unit tangent \bar{t} to the curve of the congruence which passes through the point \boldsymbol{r} after the deformation is $\bar{t}=(1-\epsilon) t+t \cdot \nabla s-s \cdot \nabla t$, which may also be expressed in the same form as (10).

The surface of striction (or orthocentric surface) of a congruence with unit tangent t is given by* div $t=0$. Hence the surface of striction of the deformed congruence has for its equation div $\bar{t}=0$, which may be expanded in the form $(1-\epsilon) \operatorname{div} t-t \cdot \nabla \epsilon-s \cdot \nabla \operatorname{div} t+t \cdot \nabla \operatorname{div} s=0$, since the divergence of the curl now vanishes identically. The limit surface \dagger of the congruence before deformation is

$$
\begin{equation*}
\operatorname{div}(t \operatorname{div} t-t \cdot \nabla t)=0, \dagger \tag{13}
\end{equation*}
$$

and that of the deformed congruence is given by a similar equation in which \bar{t} takes the place of t. The deformed curves will constitute a normal congruence provided we have

$$
\bar{t} \cdot \operatorname{curl} \bar{t}=0,
$$

and they will constitute an isometric congruence if, in addition, \bar{t} satisfies the equation§

$$
\begin{equation*}
\operatorname{curl}(\bar{t} \operatorname{div} \bar{t}-\bar{t} \cdot \nabla \bar{t})=0 \tag{14}
\end{equation*}
$$

which may be expanded in terms of \boldsymbol{t} and s .
Canterbury College,
Christchurch, New Zealand.

[^3]
[^0]: *See also a paper by Perna, Giornale di Matematiche, vol. 36 (1898), pp. 286-299; and another by Salkowski, Mathematische Annalen, vol. 66 (1908), pp. 517-557.

[^1]: *This case has been considered in some detail by Sannia, Rendiconti di Palermo, vol. 21 (1906), pp. 229-256.
 \dagger Quarterly Journal, vol. 50 (1925), pp. 230-269.

[^2]: * Some new theorems in geometry of a surface, § 2, Mathematical Gazette, vol. 13 (1926), pp. 1-6.
 \dagger Quarterly Journal, loc. cit., § 7.
 \ddagger See a paper by the author On families of curves and surfaces, §7, recently communicated to the Messenger of Mathematics.
 § Quarterly Journal, loc. cit., § 8.
 || Mathematical Gazette, loc. cit., § 4.

[^3]: * See a paper by the author On congruences of curves, § 6, recently communicated to the Tôhoku Mathematical Journal.
 \dagger Ibid., § 4.
 \ddagger This equation for the limit surface of a curvilinear congruence was first given by the author in a paper On isometric systems of curves and surfaces, recently communicated to the American Journal.
 § Ibid., § 6.

