INTEGERS REPRESENTED BY POSITIVE TERNARY QUADRATIC FORMS*

BY L. E. DICKSON

1. Introduction. Dirichlet \dagger proved by the method of $\S 2$ the following two theorems:

Theorem I. $A=x^{2}+y^{2}+z^{2}$ represents exclusively all positive integers not of the form $4^{k}(8 n+7)$.

Theorem II. $B=x^{2}+y^{2}+3 z^{2}$ represents every positive integer not divisible by 3.

Without giving any details, he stated that like considerations applied to the representation of multiples of 3 by B. But the latter problem is much more difficult and no treatment has since been published; it is solved below by two methods.

Ramanujan \ddagger readily found all sets of positive integers a, b, c, d such that every positive integer can be expressed in the form $a x^{2}+b y^{2}+c z^{2}+d u^{2}$. He made use of the forms of numbers representable by

$$
\begin{aligned}
A, B, C & =x^{2}+y^{2}+2 z^{2} \\
D & =x^{2}+2 y^{2}+2 z^{2} \\
E & =x^{2}+2 y^{2}+3 z^{2} \\
F & =x^{2}+2 y^{2}+4 z^{2} \\
G & =x^{2}+2 y^{2}+5 z^{2}
\end{aligned}
$$

He gave no proofs for these forms and doubtless obtained his results empirically. We shall give a complete theory for these forms. These cases indicate clearly methods of procedure for any similar form.

For a new theorem on forms in n variables, see $\S 9$.

[^0]2. The Form B. Let B represent a multiple of 3 . Since -1 is a quadratic non-residue of $3, x$ and y must be multiples of 3 . Thus $B=3 \beta, \beta=3 X^{2}+3 Y^{2}+z^{2}$. Since $\beta \equiv 0$ or $1(\bmod 3)$, β represents no integer $3 n+2$. If β is divisible by $3, z$ is divisible by 3 and B is the product of a like form by 9 . We shall prove that β represents every positive integer $3 n+1$. These results and Theorem II give

Theorem III. $x^{2}+y^{2}+3 z^{2}$ represents exclusively all positive integers not of the form $9^{k}(9 n+6)$.

We shall change the notation from β to f and employ the fact that the only reduced positive ternary forms of Hessian 9 are*

$$
\begin{aligned}
f=x^{2}+3 y^{2}+3 z^{2}, & g=x^{2}+y^{2}+9 z^{2}, \\
h=x^{2}+2 y^{2}+5 z^{2}-2 y z, & l=2 x^{2}+2 y^{2}+3 z^{2}-2 x y .
\end{aligned}
$$

No one of g, h, l represents an integer $8 m+7$. For g this follows from Theorem I, since $g \equiv A(\bmod 8)$. Suppose $l \equiv 7(\bmod 8)$. Then z is odd, $2 s \equiv 4(\bmod 8)$, where $s=x^{2}+y^{2}-x y$. Thus s is even and $(1+x)(1+y) \equiv 1(\bmod 2), x$ and y are even, and $s \equiv 0(\bmod 4)$, a contradiction. Finally, let $h \equiv 7(\bmod 8)$. If y is even, $h \equiv x^{2}+z^{2} \quad 3(\bmod 4)$. Hence y is odd and

$$
3 \equiv h \equiv x^{2}+(z-1)^{2}+1 \quad(\bmod 4)
$$

so that x and $z-1$ are odd. Write $z=2 Z$. Then $h \equiv 3+4 Z$ $(Z-1) \equiv 3(\bmod 8)$.

Consider the ternary form lacking the term $x y$:

$$
\begin{equation*}
\phi=a x^{2}+b y^{2}+c z^{2}+2 r y z+2 s x z . \tag{1}
\end{equation*}
$$

Its Hessian H is $a \Delta-b s^{2}$, where $\Delta=b c-r^{2}$. Take $H=9, s=1$, $\Delta=24 t, t=6 k+1$. Then $b=3 \beta, \beta=8 a t-3$. If a is not divisible by $3, \beta=48 a k+8 a-3$ is a linear function of k with relatively prime coefficients and hence represents an infinitude of primes.

[^1]Take $a=3 n+1$. Then $\beta \equiv-1(\bmod 6)$,

$$
\begin{align*}
\left(\frac{-3}{\beta}\right) & =-1, \quad\left(\frac{2}{\beta}\right)=-1 \tag{2}\\
\left(\frac{t}{\beta}\right) & =\left(\frac{\beta}{t}\right)=\left(\frac{-3}{t}\right)=1, \quad\left(\frac{-\Delta}{\beta}\right)=1 .
\end{align*}
$$

Hence $w^{2} \equiv-\Delta(\bmod \beta)$ is solvable. We can choose a multiple r of 3 such that $r \equiv w(\bmod \beta)$. Then $\left(\Delta+r^{2}\right) / b$ is an integer c. Since ϕ represents $b \equiv 7(\bmod 8)$, it is equivalent to no one of g, h, l and hence is equivalent to f. Thus f represents every $a=3 n+1$.

Theorem IV. $x^{3}+3 y^{2}+3 z^{2}$ represents exclusively all positive integers not of the form $9^{k}(3 n+2)$.

This theory for B made use of forms of the larger Hessian 9. We shall next show how to deduce a theory making use only of forms having the same Hessian 3 as B.
3. A New Theory for B. We proved that f is equivalent to a form (1) having $a=3 n+1, b=3 \beta, r=3 \rho, s=1$, where $\beta=8 a t-3$ is a prime. In $9=H=a\left(b c-r^{2}\right)-3 \beta$, replace β by its value. Thence $c=\left(8 t+3 \rho^{2}\right) / \beta \equiv 1(\bmod 3), c=1+3 \gamma$. In (1) replace x by $X-z$. We get

$$
\psi=a X^{2}-6 n X z+3(n+\gamma) z^{2}+3 \beta y^{2}+6 \rho y z
$$

Write $3 z=Z, 3 y=Y$. Then

$$
3 \psi=3 a X^{2}-6 n X Z+(n+\gamma) Z^{2}+\beta Y^{2}+2 \rho Y Z
$$

is equivalent to $3 f=3 x^{2}+Y^{2}+Z^{2}$ and hence to B. In 3ψ, replace a by α, β by b, ρ by r. We conclude that (1) is equivalent to B if

$$
\begin{gather*}
a=3 \alpha, \quad \alpha=3 n+1, \quad b=8 \alpha t-3 \tag{3}\\
t=6 k+1, \quad s=-3 n=1-\alpha
\end{gather*}
$$

We shall now give a direct proof that there exists a form (1) of Hessian 3 which satisfies conditions (3) and is equivalent to B. In $H=3$, replace a and s by their values in (3). We get

$$
b+3+3 \alpha r^{2}-\alpha b P=0, \quad P=3 c+2-\alpha
$$

Replace the first term b by its value in (3), and cancel α. We get

$$
\begin{equation*}
8 t+3 r^{2}-b P=0, \quad-24 t \equiv(3 r)^{2} \quad(\bmod b) \tag{4}
\end{equation*}
$$

This congruence is solvable by (2) with β replaced by b. By (4), $8 t(1-P) \equiv 0, P \equiv 1(\bmod 3)$. Hence the value of c determined by P is an integer. The only two reduced forms of Hessian 3 are B and $\chi=x^{2}+2 \sigma$, where $\sigma=y^{2}+y z+z^{2}$. Suppose $\chi \equiv 5$ $(\bmod 8)$. Then x is odd and $\sigma \equiv 2(\bmod 4)$. Thus

$$
(1+y)(1+z) \equiv 1, \quad y \equiv z \equiv 0(\bmod 2), \quad \sigma \equiv 0(\bmod 4)
$$

This contradiction shows that b is not represented by χ. Since (1) represents b, it is not equivalent to χ and hence is equivalent to B. Thus B as well as ϕ represents* $a=3 \alpha$. This completes the new proof of Theorem III by using only forms of Hessian 3. The numbers represented by χ are given by Theorem XI.
4. The Form $C=x^{2}+y^{2}+2 z^{2}$. By Theorem I, A represents every positive $4 k+2$. Then just two of x, y, z are odd, say x and y, while $z=2 Z$. Then $x=X+Y, y=X-Y$ determine integers X and Y. Hence

$$
X^{2}+Y^{2}+2 Z^{2}=2 k+1
$$

so that C represents all positive odd integers. \dagger If $m \neq 4^{k}(8 n+7), m=X^{2}+Y^{2}+z^{2}$,
by Theorem I. Hence

$$
2 m=(X+Y)^{2}+(X-Y)^{2}+2 z^{2}
$$

Conversely, if C is even, it is of the latter form.
Theorem V. C represents exclusively all positive integers not of the form $4^{k}(16 n+14)$.
5. The Form $D=x^{2}+2 y^{2}+2 z^{2}$. If m is odd and $\neq 8 n+7$, $m=x^{2}+Y^{2}+Z^{2}$ by Theorem I. Then $x+Y+Z$ is odd. Permuting, we may take x odd, and write $Y+Z=2 y, Y-Z=2 z$.

[^2]Then $m=D$. Next, let $m=2 r$ be any even integer not of the form $4^{k}(8 n+7)$. Then $r \neq 4^{t}(16 n+14)$. By Theorem V, r is represented by C. Then $m=2 r$ is represented by D with x even.

Theorem VI. D represents exclusively* all positive integers not of the form $4^{k}(8 n+7)$.
6. The Form $F=x^{2}+2 y^{2}+4 z^{2}$. Every odd integer is represented by C with $x+y$ odd, whence one of x and y is even. Any integer $\neq 4^{k}(8 n+7)$ is represented by D, and $2 D=(2 y)^{2}$ $+2 x^{2}+4 z^{2}$.

Theorem VII. F represents exclusively \dagger all positive integers not of the form $4^{k}(16 n+14)$.

The simple methods used in proving Theorems V-VII apply also to $x^{2}+2^{r} y+2^{s} z$ when r and s are both $\leqq 3$, and when $r=1$ or $3, s=4$.
7. The Form $G=x^{2}+2 y^{2}+5 z^{2}$. The only reduced forms of Hessian 10 are $G, J=x^{2}+y^{2}+10 z^{2}, K=2 x^{2}+2 y^{2}+3 z^{2}+2 x z$, and $L=2 x^{2}+2 y^{2}+4 z^{2}+2 y z+2 x z+2 x y$. Neither J nor K represents a number of the form $2(8 n+3)$. For, if K is even, $z=2 Z, K=2 M, M=X^{2}+y^{2}+5 Z^{2}$, where $X=x+Z$. Since M is congruent to a sum of three squares modulo 4 , it is congruent to 3 if and only if each square is odd, and then $M \equiv 7(\bmod 8)$. If J is even, $x=y+2 t, J=2 N, N=(y+t)^{2}+t^{2}+5 z^{2} \neq 3(\bmod 8)$.

We now apply the method of $\S 2$ to prove that G represents every positive integer prime to 10 . Take $\Delta=16 k, k=10 l \pm 3$. Then $b=2 \beta$, where $\beta=8 k a-5$ represents infinitely many primes. Now

$$
\begin{aligned}
& \left(\frac{-\beta}{k}\right)=\left(\frac{5}{k}\right)=\left(\frac{k}{5}\right)=-1 \\
& \left(\frac{-\Delta}{\beta}\right)=-\left(\frac{k}{\beta}\right)=-\left(\frac{-\beta}{k}\right)=1
\end{aligned}
$$

Since (1) represents b, which is of the form $2(8 n+3)$, it is not equivalent to J or K. Since it represents the odd a, it is not

[^3]equivalent to L. Hence (1) is equivalent to G, which therefore represents a.

If G represents a multiple of 5 , it is the product of 5 by $g=5 X^{2}+10 Y^{2}+z^{2}$, whence G represents no $5(5 n \pm 2)$. Also, g is divisible by 5 only when z is. Thus G is divisible by 25 only when it is a product of 25 by a form like G.

To prove* that G represents every 5α if $\alpha=5 n \pm 1$ is odd, employ (1) with $a=5 \alpha, b=2 \beta, \beta=8 \alpha t-5, r=2 \rho, s=1 \mp \alpha$. The Hessian of (1) is 10 if

$$
\beta+5+10 \alpha \rho^{2}-\alpha \beta P=0, \quad P=5 c \pm 2-\alpha
$$

Take t prime to 10 and replace the first β by its value. Thus $8 t+10 \rho^{2}-\beta P=0, P \equiv \pm 1(\bmod 5)$. Hence P yields an integral value for c. Also,

$$
\begin{align*}
\left(\frac{t}{\beta}\right) & =\left(\frac{-\beta}{t}\right)=\left(\frac{5}{t}\right) \\
\left(\frac{5}{\beta}\right) & =\left(\frac{\beta}{5}\right)=\left(\frac{ \pm 8 t}{5}\right)=-\left(\frac{t}{5}\right), \tag{5}\\
\left(\frac{-80 t}{\beta}\right) & =-\left(\frac{5 t}{\beta}\right)=1
\end{align*}
$$

Next, if G is even, $x=z+2 w$ and $G=2 T$, where

$$
T=y^{2}+2 w^{2}+2 w z+3 z^{2}, \quad S=x^{2}+y^{2}+5 z^{2}
$$

are the only reduced forms of Hessian 5. Every positive integer a prime to 5 is represented by T. Take $\Delta=8 k, k=10 \mathrm{~m} \pm 1$. Then $b=a \Delta-5$ represents an infinitude of primes, and
$\left(\frac{-2}{b}\right)=1,\left(\frac{-\Delta}{b}\right)=\left(\frac{k}{b}\right)=\left(\frac{-b}{k}\right)=\left(\frac{5}{k}\right)=\left(\frac{k}{5}\right)=1$.
Now $b \equiv 3(\bmod 8)$ is not represented by S, as proved for M. Hence (1) is equivalent to T and not S. Thus T represents a.

[^4]We saw that $2 T=G$ represents no $5(5 m \pm 2)$. Thus T represents no $5(5 n \pm 1)$. To prove that T represents every 5α, where $\alpha=5 n \pm 2$, employ (1) with $a=5 \alpha, s=1 \pm 2 \alpha$. Its Hessian is 5 if

$$
b+5+5 \alpha r^{2}-\alpha b P=0, \quad P=5 c-4 \alpha \pm 4
$$

Replace the first term b by $8 t \alpha-5$, where t is prime to 10 . Thus $8 t+5 r^{2}-b P=0$. Hence $8 t(1 \mp 2 P) \equiv 0, P \equiv \pm 3(\bmod 5)$, and the resulting value of c is an integer. Also

$$
\begin{aligned}
\left(\frac{5}{b}\right)=\left(\frac{b}{5}\right) & =\left(\frac{ \pm 16 t}{5}\right)=\left(\frac{t}{5}\right) \\
\left(\frac{t}{b}\right) & =\left(\frac{-b}{t}\right)=\left(\frac{5}{t}\right),\left(\frac{-40 t}{b}\right)=1
\end{aligned}
$$

We have now proved the two theorems:
Theorem VIII. T represents exclusively all $\neq 25^{k}(25 n \pm 5)$.
Theorem IX. G represents exclusively all $\neq 25^{k}(25 n \pm 10)$.
8. The Form $E=x^{2}+2 y^{2}+3 z^{2}$. We shall outline a proof of the following theorem.

Theorem X. E represents exclusively all $\neq 4^{k}(16 n+10)$.
The only reduced forms of Hessian 6 are E and

$$
Q=x^{2}+y^{2}+6 z^{2}, \quad R=2 x^{2}+2 y^{2}+2 z^{2}+2 x y .
$$

To prove that E represents every positive odd integer a, take $\Delta=9 k, k=8 t+3$. Then $b=3 \beta$, where β represents primes. Also $(-\Delta / \beta)=1$. The resulting form (1) represents the odd a and hence is not equivalent to R. Since it represents $b=3(3 n+1)$, it is not equivalent to Q. For, if Q is divisible by 3 , both x and y are.

If E is even, then $x=z+2 t$ and $E=2 U$,

$$
U=y^{2}+2 z^{2}+2 z t+2 t^{2}
$$

and conversely. In place of U we employ the like form χ of $\S 3$. To show that χ represents $a=2 \alpha$ when α is odd, take $\Delta=9 k$, $k=4 t+1$. Then $b=a \Delta-3 \equiv 6(\bmod 9)$ is not represented by the remaining reduced form B of Hessian 3 (Theorem III). Also $b=3 \beta,(-\Delta / \beta)=+1$.

Finally, χ represents every positive odd integer $a \neq 5(\bmod 8)$. Write $\alpha=\frac{1}{2}(3 a-1)$ and take $\Delta=9 k, k=2 h+1$. Then $b=6 q$, $q=3 a h+\alpha$. If $a=8 A+1$, take $h=4 t, t$ odd. Then $q=12 A k$ $+12 t+1$,
$\left(\frac{-\Delta}{q}\right)=\left(\frac{k}{q}\right)=\left(\frac{q}{k}\right)=\left(\frac{12 t+1-k}{k}\right)=\left(\frac{4 t}{k}\right)=\left(\frac{k}{t}\right)=1$.
If $a=8 A+3$, take $h=4 t+1$. If $a=8 A+7$, take $h=4 t+1$. In each case $(-\Delta / q)=1$. In all three cases, q represents an infinitude of primes.

Theorem XI. $x^{2}+2 y^{2}+2 y z+2 z^{2}$ represents exclusively all positive integers not of the form $4^{k}(8 n+5)$.
9. Forms in n Variables. By a simple modification of Ramanujan's determination of quaternary forms which represent all positive integers, we readily prove*

Theorem XII. If, for $n \geqq 5, f=a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}$ represents all positive integers, while no sum of fewer than n terms of f represents all positive integers, then $n=5$ and

$$
f=x^{2}+2 y^{2}+5 z^{2}+5 u^{2}+e v^{2}, \quad(e=5,11,12,13,14,15)
$$

and these six forms f actually have the property stated.
After this paper was in type, I saw that J. G. A. Arndt gave \dagger the Dirichlet type of proof which appears in §2 above, but not the improved new proof of $\S 3$. For the form G of $\S 7$, he treats only numbers not divisible by 5 .

Tee University of Chicago

[^5]
[^0]: * Presented to the Society, December 31, 1926.
 \dagger Journal für Mathematik, vol. 40 (1850), pp. 228-32; French translation Journal de Mathématiques, (2), vol. 4 (1859), pp. 233-40; Werke, vol. II, pp. 89-96.
 \ddagger Proceedings of the Cambridge Philosophical Society, vol. 19 (191619), pp. 11-15. He overlooked the fact that $x^{2}+2 y^{2}+5 z^{2}+5 u^{2}$ fails to represent 15.

[^1]: * Eisenstein, Journal für Mathematik, vol. 41 (1851), p. 169. By the Hessian H of ϕ we mean the determinant whose elements are the halves of the second partial derivatives of ϕ with respect to x, y, z. Eisenstein called $-H$ the determinant of $;$. The facts borrowed in this paper from Eisenstein's table have been verified independently by the writer.

[^2]: * If we apply the method of $\S 2$ when $H=3$ and hence take $s=1, b=3 \beta$, where β is a prime $\equiv-1(\bmod 8)$, we find that it fails for all choices of Δ.
 \dagger Lebesque, Journal de Mathématiques, (2), vol. 2 (1857), p. 149, gave a long proof by the method of $\$ 2$.

[^3]: * $D=x^{2}+(y+z)^{2}+(y-z)^{2} \neq 4^{k}(8 n+7)$ by Theorem I.
 \dagger If F is even, x is even and F is the double of a form D.

[^4]: * Or we may use the method of $\S 2$. Of the ten properly primitive reduced forms of Hessian 50, all except g fail to represent numbers $\equiv 14(\bmod 16)$. To prove that g represents $\alpha=5 n \pm 1$ when odd, take $\Delta=80 t$, whence $b=10 \beta, \beta=8 \alpha t-5$; apply (5). From this proof was reconstructed the shorter one in the text.

[^5]: *Note to appear in Proceedings of the National Academy.
 \dagger Ueber die Darstellung ganzer Zahlen als Summen von sieben Kuben, Dissertation, Göttingen, 1925.

