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INTEGERS REPRESENTED BY POSITIVE TERNARY
QUADRATIC FORMS*

BY L. E. DICKSON

1. Introduction. Dirichletf proved by the method of §2
the following two theorems:

THEOREM 1. A =ux2+y2+232% represents exclusively all posi-
tive integers not of the form 4*(8n-+T7).

THEOREM I1I. B=ux?+1y%+4322 represents every positive in-
teger not divisible by 3.

Without giving any details, he stated that like considera-
tions applied to the representation of multiples of 3 by B. But
the latter problem is much more difficult and no treatment has
since been published; it is solved below by two methods.

Ramanujan] readily found all sets of positive integers
a, b, ¢, d such that every positive integer can be expressed in
the form ax?+4by%+4cz2+du?. He made use of the forms of
numbers representable by

A, B,C = 5?4 y2 4 222,

D = x*+2y? + 222,

E = %+ 2y% 4 332,

F = x?+ 2y? + 422,

G = x?+ 2y? + 522
He gave no proofs for these forms and doubtless obtained his
results empirically. We shall give a complete theory for these
forms. These cases indicate clearly methods of procedure for
any similar form.

For a new theorem on forms in # variables, see §9.

* Presented to the Society, December 31, 1926.

1 Journal fiir Mathematik, vol. 40 (1850), pp. 228-32; French trans-
lation Journal de Mathématiques, (2), vol. 4 (1859), pp. 233-40; Werke,
vol. II, pp. 89-96.

I Proceedings of the Cambridge Philosophical Society, vol. 19 (1916-
19), pp. 11-15. He overlooked the fact that x2--2y2-4522--542 fails to
represent 15.
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2. The Form B. Let B represent a multiple of 3. Since
—1 is a quadratic non-residue of 3, x and y must be multiples
of 3. Thus B=3B, 8=3X2+3YV2%+22 Since =0 or 1(mod 3),
B represents no integer 3n+2. If Bis divisible by 3, z is divisi-
ble by 3 and B is the product of a like form by 9. We shall
prove that (8 represents every positive integer 3n+1. These
results and Theorem II give

TueoREM III. x2+y24-32% represents exclusively all positive
integers not of the form 9%(9n4-6).

We shall change the notation from 8 to f and employ the
fact that the only reduced positive ternary forms of Hessian 9
are*

f= x®+ 392 + 322, g = x4+ y? 4 92%,
h = x*+ 292 4 522 — 2yz, I = 2x% 4 2y% 4 322 — 2uy.

No one of g, &, ] represents an integer 8m-+7. For g this fol-
lows from Theorem I, since g=A4 (mod8). Suppose I="7(mod 8).
Then z is odd, 2s=4(mod 8), where s=x2+y2—xy. Thus s is
even and (14+x)(14+y)=1(mod 2), x and y are even, and
s=0(mod 4), a contradiction. Finally, let z=7(mod 8). If
y is even, h=x%+2?2 3(mod 4). Hence ¥ is odd and

3=h=x?4(2—1)%+1 (mod 4),
so that x and z—1 are odd. Write 2=2Z. Then h=3+4Z
(Z—1)=3(mod 8).

Consider the ternary form lacking the term xy:

(1) ¢ = ax? 4 by? + cz? 4 2ryz + 2sx3.

Its Hessian H is aA —bs?, where A=bc—7r2. Take H=9, s=1,
A=24t t=6k+1. Then b=38, 8=8at—3. If a is not divisible
by 3, 8=48ak+8a—3 is a linear function of % with relatively
prime coefficients and hence represents an infinitude of primes.

* Eisenstein, Journal fiir Mathematik, vol. 41 (1851), p. 169. By the
Hessian H of ¢ we mean the determinant whose elements are the halves of
the second partial derivatives of ¢ with respect to x, v, 2. Eisenstein
called —H the determinant of ». The facts borrowed in this paper from
Eisenstein’s table have been verified independently by the writer.
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Take a=3#+1. Then 8= -—1(mod 6),
) @)
B)-@-C)- (-

Hence w?= —A(mod ) is solvable. We can choose a multiple
r of 3 such that r=w(mod 8). Then (A+r?)/b is an integer c.
Since ¢ represents b=7(mod 8), it is equivalent to no one of
g, h, I and hence is equivalent to f. Thus f represents every
a=3n+1.

THEOREM IV. x3+43y24-33% represents exclusively all posi-
tive integers not of the form 9%(3n+2).

This theory for B made use of forms of the larger Hessian 9.
We shall next show how to deduce a theory making use only
of forms having the same Hessian 3 as B.

2

3. A New Theory for B. We proved that f is equivalent to
a form (1) having e=3n+1, b=38, r=3p, s=1, where
B=8at—3 is a prime. In 9=H =a(bc—1?) — 3B, replace B by its
value. Thence c¢=(8t43p?)/B=1(mod 3), c=1+3y. In (1)
replace x by X —z. We get

¥ = aX? — 6nXz + 3(n + v)2* + 38y% + 6pyz.
Write 3z=Z, 3y=Y. Then
3 = 3aX2 — 6nXZ 4+ (n + v)Z% 4+ BY2 4 2pYZ
is equivalent to 3f=3x2+4 Y2422 and hence to B. In 3y, re-
place a by a, 8 by b, p by r. We conclude that (1) is equivalent
to B if
3) a = 3a, a=3n+1, b= 8at — 3,
t=06k+ 1, s=—3n=1—a.
We shall now give a direct proof that there exists a form (1)

of Hessian 3 which satisfies conditions (3) and is equivalent
to B. In H=3, replace @ and s by their values in (3). We get

b+ 3+ 3ar? — abP = 0, P =3+ 2—a.
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Replace the first term b by its value in (3), and cancel . We
get

(4) 8t + 312 — bP =0, — 24t = (3r)? (mod ).

This congruence is solvable by (2) with B replaced by b. By (4),
8t(1—P)=0, P=1(mod 3). Hence the value of ¢ determined
by P is an integer. The only two reduced forms of Hessian 3
are B and x=x?+2¢, where c=y2+yz42% Suppose x=5
(mod 8). Then x is odd and ¢=2(mod 4). Thus

A4+ vl 4+2)=1, y=2z=0 (mod2), ¢=0(mod4).

This contradiction shows that b is not represented by x. Since
(1) represents b, it is not equivalent to x and hence is equiva-
lent to B. Thus B as well as ¢ represents* a =3a. This com-
pletes the new proof of Theorem III by using only forms of
Hessian 3. The numbers represented by x are given by Theo-
rem XI.

4. The Form C=x?+y?+4222. By Theorem I, 4 repre-
sents every positive 4k+2. Then just two of x, ¥, z are odd,
say x and y, whilez=2Z. Then x=X+Y, y=X — ¥V determine
integers X and Y. Hence

X2+ V24222=2k+1,
so that C represents all positive odd integers.t If
m#4k(8n+7),m=X24 V2422,
by Theorem I. Hence
2m=(X+Y)?+(X—Y)2+4222
Conversely, if C is even, it is of the latter form.

THEOREM V. C represents exclusively all positive inlegers not

of the form 4¥(16n+14).

S. The Form D=x%*+2y?+222 If m is odd and =8n-+7,
m=x2+4 Y2422 by Theorem 1. Then x+YV+Z is odd. Per-
muting, we may take x odd, and write Y4+Z=2y, Y —Z=2z.

* If we apply the method of §2 when H=3 and hence take s=1, =38,
where 8 is a prime = —1(mod 8), we find that it fails for all choices of A.

tLebesque, Journal de Mathématiques, (2), vol. 2 (1857), p. 149, gave a
long proof by the method of §2.
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Then m=D. Next, let m=2r be any even integer not of the
form 4%(8n+47). Then r£4‘(16n-+14). By Theorem V, 7 is
represented by C. Then m = 2r is represented by D with x even.

THEOREM V1. D represents exclusively* all positive integers
not of the form 4*(8n+7).

6. The Form F=x%42y?+44z2 Every odd integer is re-
presented by C with x4y odd, whence one of x and y is even.
Any integer #%4%(8%+7) is represented by D, and 2D = (2y)?
+2x2+4422,

TueoreM VII. F represents exclusivelyt all positive integers
not of the form 4¥(16n+414).

The simple methods used in proving Theorems V-VII apply
also to x2+427y-+2%z when 7 and s are both =3, and when
r=1or 3, s=4.

7. The Form G=x2+2y%*4532. The only reduced forms
of Hessian 10 are G, J =x2+4y241022, K = 2x2+4 2423224 2x3,
and L=2x2+2y2445242yz+2x3+2xy. Neither J nor K re-
presents a number of the form 2(8z+43). For, if K is even,
2=2Z, K=2M, M=X?+y24522, where X =x+Z. Since M
is congruent to a sum of three squares modulo 4, it is congruent
to 3 if and only if each square is odd, and then M=7(mod 8).
If Jiseven, x=y-+42¢, J=2N, N=(y+48)2442+52%5 3(mod 8).

We now apply the method of §2 to prove that G represents
every positive integer prime to 10. Take A=16k, k=10/+3.
Then b=2B, where 3=8ka—5 represents infinitely many
primes. Now

(59)-(G)-()
—_— = _ = —_— = — 1,
k k 5
— A j2 —
G)--6)--GO-
B g8 k
Since (1) represents b, which is of the form 2(8x#+43), it is not
equivalent to J or K. Since it represents the odd g, it is not

* D =x2+(y+2)2+(y—2):#4%(8n+7) by Theorem I.
t If Fiseven, x is even and F'is the double of a form D,
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equivalent to L. Hence (1) is equivalent to G, which therefore
represents a.

If G represents a multiple of 5, it is the product of 5 by
g=5X24+10Y2+422, whence G represents no 5(5z+2). Also,
g is divisible by 5 only when z is. Thus G is divisible by 25
only when it is a product of 25 by a form like G.

To prove* that G represents every Sa if a=57n+1 is odd,
employ (1) with e=35a, b=28, f=8at—35, r=2p, s=1Foa.
The Hessian of (1) is 10 if

B+ 5+ 10ap? — afP = 0, P=5%2-—a.

Take ¢ prime to 10 and replace the first 8 by its value. Thus
8t+10p2—BP =0, P= +1(mod 5). Hence P yields an integral
value for ¢. Also,

(0)-2)-6)
o (-G
()~ ()

Next, if G is even, x=2z+42w and G=2T, where
T = 924 2w? 4 2wz 4 322, S = x? 4 y% 4 522
are the only reduced forms of Hessian 5. Every positive in-

teger a prime to 5 is represented by T. TakeA=8k,k=10m +1.
Then b=aA—35 represents an infinitude of primes, and

)+ (- 6)-6)-0)- ()

Now b=3(mod 8) is not represented by S, as proved for M.
Hence (1) is equivalent to T and not S. Thus T represents a.

* Or we may use the method of §2. Of the ten properly primitive re-
duced forms of Hessian 50, all except g fail to represent numbers
=14(mod 16). To prove that g represents a=5z+1 when odd, take
A=80¢, whence b=108, 8=8at—35; apply (5). From this proof was re-
constructed the shorter one in the text.




1927] INTEGERS AS TERNARY QUADRATIC FORMS 69

We saw that 2T =G represents no 5(5m+2). Thus T re-
presents no 5(5z+1). To prove that T represents every S,
where a=>5n+2, employ (1) with ¢=5¢, s=142a. Its Hes-
sian is 5 if

b+ 5+ Sar? — abP = 0, P = 5¢c— 4a + 4.
Replace the first term b by 8t:— 5, where ¢ is prime to 10. Thus
8t4572—bP=0. Hence 8t(1F2P)=0, P=+3(mod 5), and
the resulting value of c is an integer. Also

()-)-()-6)
(B-9-6) (-

We have now proved the two theorems:

TuEOREM VIII. T represents exclusively all #25%(25n+5).
THEOREM IX. G represents exclusively all #25%(25n +10).

8. The Form E=x2+2y2+322. We shall outline a proof
of the following theorem.

TueorEM X. E represents exclusively all #4*%(16n+10).

The only reduced forms of Hessian 6 are E and

Q= x4 y* 4 622, R = 2x% 4 29% 4 232 4 2xy,

To prove that E represents every positive odd integer a, take
A =09k, k=8t+3. Then b=233, where (8 represents primes. Also
(—A/B)=1. The resulting form (1) represents the odd a and
hence is not equivalent to R. Since it represents b=3(3n41),
it is not equivalent to Q. For, if Q is divisible by 3, both x and
y are.

If E is even, then x=2+2¢ and E=2U,

U=1y2+422%+ 23t} 2t

and conversely. In place of U we employ the like form x of §3.
To show that x represents @ =20 when « is odd, take A =9k,
k=4t+4+1. Then b=aA—3=6(mod 9) is not represented by
the remaining reduced form B of Hessian 3 (Theorem III).
Also =3B, (—A/B)=+1.
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Finally, x represents every positive odd integer a 5% 5(mod 8).
Write a=%(3a¢—1) and take A=9%, k=2h+1. Then b=6g,
g=3ah+a. If a=84+41, take h=4¢, t odd. Then g=124%
+12¢41,

(59)-()-()-C7)-G)-() -
e / \q¢/) \&/ A “\&/ \:/)
If a=84+3, take h=4¢+1. If a=84+7, take h=4¢+1. In

each case (—A/q)=1. In all three cases, ¢ represents an in-
finitude of primes.

THEOREM XI. x242y2+2yz-+222 represents exclusively all
positive integers not of the form 4*(8n-5).

9. Forms in n Variables. By a simple modification of
Ramanujan’s determination of quaternary forms which repre-
sent all positive integers, we readily prove*

THEOREM XII. If, for n=S5, f=aixt+ - - - +a.xd repre-
sents all positive integers, while no sum of fewer than n terms of
f represents all positive integers, then n=>5 and

f= a4 2924 522 4 Su? -+ ev?, (e = 5,11,12,13,14,15),
and these six forms f actually have the property stated.

After this paper was in type, I saw that J. G. A. Arndt gavet
the Dirichlet type of proof which appears in §2 above, but not
the improved new proof of §3. For the form G of §7, he treats
only numbers not divisible by 5.

Tug UNIVERSITY OF CHICAGO

*Note to appear in Proceedings of the National Academy.
tUeber die Darstellung ganzer Zahlen als Summen von sieben Kuben,
Dissertation, Géttingen, 1925.
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