INTEGERS REPRESENTED BY POSITIVE TERNARY QUADRATIC FORMS*

BY L. E. DICKSON

1. Introduction. Dirichlet[†] proved by the method of §2 the following two theorems:

THEOREM I. $A = x^2 + y^2 + z^2$ represents exclusively all positive integers not of the form $4^k(8n+7)$.

THEOREM II. $B = x^2 + y^2 + 3z^2$ represents every positive integer not divisible by 3.

Without giving any details, he stated that like considerations applied to the representation of multiples of 3 by B. But the latter problem is much more difficult and no treatment has since been published; it is solved below by two methods.

Ramanujan[‡] readily found all sets of positive integers a, b, c, d such that every positive integer can be expressed in the form $ax^2+by^2+cz^2+du^2$. He made use of the forms of numbers representable by

A, B, C =
$$x^{2} + y^{2} + 2z^{2}$$
,
 $D = x^{2} + 2y^{2} + 2z^{2}$,
 $E = x^{2} + 2y^{2} + 3z^{2}$,
 $F = x^{2} + 2y^{2} + 4z^{2}$,
 $G = x^{2} + 2y^{2} + 5z^{2}$.

He gave no proofs for these forms and doubtless obtained his results empirically. We shall give a complete theory for these forms. These cases indicate clearly methods of procedure for any similar form.

For a new theorem on forms in n variables, see §9.

^{*} Presented to the Society, December 31, 1926.

[†] Journal für Mathematik, vol. 40 (1850), pp. 228-32; French translation Journal de Mathématiques, (2), vol. 4 (1859), pp. 233-40; Werke, vol. II, pp. 89-96.

[‡] Proceedings of the Cambridge Philosophical Society, vol. 19 (1916– 19), pp. 11–15. He overlooked the fact that $x^2+2y^2+5z^2+5u^2$ fails to represent 15.

2. The Form B. Let B represent a multiple of 3. Since -1 is a quadratic non-residue of 3, x and y must be multiples of 3. Thus $B = 3\beta$, $\beta = 3X^2 + 3Y^2 + z^2$. Since $\beta \equiv 0$ or $1 \pmod{3}$, β represents no integer 3n+2. If β is divisible by 3, z is divisible by 3 and B is the product of a like form by 9. We shall prove that β represents every positive integer 3n+1. These results and Theorem II give

THEOREM III. $x^2+y^2+3z^2$ represents exclusively all positive integers not of the form $9^k(9n+6)$.

We shall change the notation from β to f and employ the fact that the only reduced positive ternary forms of Hessian 9 are*

$$f = x^{2} + 3y^{2} + 3z^{2}, \qquad g = x^{2} + y^{2} + 9z^{2},$$

$$h = x^{2} + 2y^{2} + 5z^{2} - 2yz, \qquad l = 2x^{2} + 2y^{2} + 3z^{2} - 2xy.$$

No one of g, h, l represents an integer 8m+7. For g this follows from Theorem I, since $g \equiv A \pmod{8}$. Suppose $l \equiv 7 \pmod{8}$. Then z is odd, $2s \equiv 4 \pmod{8}$, where $s = x^2 + y^2 - xy$. Thus s is even and $(1+x)(1+y) \equiv 1 \pmod{2}$, x and y are even, and $s \equiv 0 \pmod{4}$, a contradiction. Finally, let $h \equiv 7 \pmod{8}$. If y is even, $h \equiv x^2 + z^2 - 3 \pmod{4}$. Hence y is odd and

$$3 \equiv h \equiv x^2 + (z-1)^2 + 1 \pmod{4}$$
,

so that x and z-1 are odd. Write z=2Z. Then $h\equiv 3+4Z$ $(Z-1)\equiv 3 \pmod{8}$.

Consider the ternary form lacking the term xy:

(1)
$$\phi = ax^2 + by^2 + cz^2 + 2ryz + 2sxz.$$

Its Hessian H is $a\Delta - bs^2$, where $\Delta = bc - r^2$. Take H = 9, s = 1, $\Delta = 24t$, t = 6k + 1. Then $b = 3\beta$, $\beta = 8at - 3$. If a is not divisible by 3, $\beta = 48ak + 8a - 3$ is a linear function of k with relatively prime coefficients and hence represents an infinitude of primes.

^{*} Eisenstein, Journal für Mathematik, vol. 41 (1851), p. 169. By the Hessian H of ϕ we mean the determinant whose elements are the halves of the second partial derivatives of ϕ with respect to x, y, z. Eisenstein called -H the determinant of ϕ . The facts borrowed in this paper from Eisenstein's table have been verified independently by the writer.

Take a = 3n+1. Then $\beta \equiv -1 \pmod{6}$,

(2)
$$\begin{pmatrix} -3\\ \beta \end{pmatrix} = -1, \quad \left(\frac{2}{\beta}\right) = -1, \\ \left(\frac{t}{\beta}\right) = \left(\frac{\beta}{t}\right) = \left(\frac{-3}{t}\right) = 1, \quad \left(\frac{-\Delta}{\beta}\right) = 1.$$

Hence $w^2 \equiv -\Delta \pmod{\beta}$ is solvable. We can choose a multiple r of 3 such that $r \equiv w \pmod{\beta}$. Then $(\Delta + r^2)/b$ is an integer c. Since ϕ represents $b \equiv 7 \pmod{8}$, it is equivalent to no one of g, h, l and hence is equivalent to f. Thus f represents every a = 3n+1.

THEOREM IV. $x^3+3y^2+3z^2$ represents exclusively all positive integers not of the form $9^k(3n+2)$.

This theory for B made use of forms of the larger Hessian 9. We shall next show how to deduce a theory making use only of forms having the same Hessian 3 as B.

3. A New Theory for B. We proved that f is equivalent to a form (1) having a=3n+1, $b=3\beta$, $r=3\rho$, s=1, where $\beta=8at-3$ is a prime. In $9=H=a(bc-r^2)-3\beta$, replace β by its value. Thence $c=(8t+3\rho^2)/\beta\equiv 1 \pmod{3}$, $c=1+3\gamma$. In (1) replace x by X-z. We get

$$\psi = aX^2 - 6nXz + 3(n + \gamma)z^2 + 3\beta y^2 + 6\rho yz.$$

Write 3z = Z, 3y = Y. Then

 $3\psi = 3aX^{2} - 6nXZ + (n + \gamma)Z^{2} + \beta Y^{2} + 2\rho YZ$

is equivalent to $3f = 3x^2 + Y^2 + Z^2$ and hence to *B*. In 3ψ , replace *a* by α, β by *b*, ρ by *r*. We conclude that (1) is equivalent to *B* if

(3)
$$a = 3\alpha, \quad \alpha = 3n + 1, \quad b = 8\alpha t - 3,$$

 $t = 6k + 1, \quad s = -3n = 1 - \alpha.$

We shall now give a direct proof that there exists a form (1) of Hessian 3 which satisfies conditions (3) and is equivalent to B. In H=3, replace a and s by their values in (3). We get

$$b + 3 + 3\alpha r^2 - \alpha bP = 0, \qquad P = 3c + 2 - \alpha.$$

1927]

L. E. DIXON

Replace the first term b by its value in (3), and cancel α . We get

(4)
$$8t + 3r^2 - bP = 0, -24t \equiv (3r)^2 \pmod{b}.$$

This congruence is solvable by (2) with β replaced by b. By (4), 8t(1-P) $\equiv 0$, $P \equiv 1 \pmod{3}$. Hence the value of c determined by P is an integer. The only two reduced forms of Hessian 3 are B and $\chi = x^2 + 2\sigma$, where $\sigma = y^2 + yz + z^2$. Suppose $\chi \equiv 5 \pmod{8}$. Then x is odd and $\sigma \equiv 2 \pmod{4}$. Thus

$$(1 + y)(1 + z) \equiv 1$$
, $y \equiv z \equiv 0 \pmod{2}$, $\sigma \equiv 0 \pmod{4}$.

This contradiction shows that b is not represented by χ . Since (1) represents b, it is not equivalent to χ and hence is equivalent to B. Thus B as well as ϕ represents* $a=3\alpha$. This completes the new proof of Theorem III by using only forms of Hessian 3. The numbers represented by χ are given by Theorem XI.

4. The Form $C = x^2 + y^2 + 2z^2$. By Theorem I, A represents every positive 4k+2. Then just two of x, y, z are odd, say x and y, while z = 2Z. Then x = X + Y, y = X - Y determine integers X and Y. Hence

 $X^2 + Y^2 + 2Z^2 = 2k + 1,$

so that C represents all positive odd integers.[†] If $m \neq 4^k(8n+7), m = X^2 + Y^2 + z^2$,

by Theorem I. Hence

 $2m = (X + Y)^2 + (X - Y)^2 + 2z^2.$

Conversely, if C is even, it is of the latter form.

THEOREM V. C represents exclusively all positive integers not of the form $4^k(16n+14)$.

5. The Form $D = x^2 + 2y^2 + 2z^2$. If m is odd and $\neq 8n+7$, $m = x^2 + Y^2 + Z^2$ by Theorem I. Then x + Y + Z is odd. Permuting, we may take x odd, and write Y + Z = 2y, Y - Z = 2z.

66

^{*} If we apply the method of §2 when H=3 and hence take s=1, $b=3\beta$, where β is a prime $\equiv -1 \pmod{8}$, we find that it fails for all choices of Δ .

 $^{^{}t}$ Lebesque, Journal de Mathématiques, (2), vol. 2 (1857), p. 149, gave a long proof by the method of §2.

Then m=D. Next, let m=2r be any even integer not of the form $4^{k}(8n+7)$. Then $r \neq 4^{t}(16n+14)$. By Theorem V, r is represented by C. Then m=2r is represented by D with x even.

THEOREM VI. D represents exclusively^{*} all positive integers not of the form $4^{k}(8n+7)$.

6. The Form $F = x^2 + 2y^2 + 4z^2$. Every odd integer is represented by C with x + y odd, whence one of x and y is even. Any integer $\neq 4^k(8n+7)$ is represented by D, and $2D = (2y)^2 + 2x^2 + 4z^2$.

THEOREM VII. F represents exclusively[†] all positive integers not of the form $4^{k}(16n+14)$.

The simple methods used in proving Theorems V-VII apply also to $x^2+2^ry+2^sz$ when r and s are both ≤ 3 , and when r=1 or 3, s=4.

7. The Form $G = x^2 + 2y^2 + 5z^2$. The only reduced forms of Hessian 10 are G, $J = x^2 + y^2 + 10z^2$, $K = 2x^2 + 2y^2 + 3z^2 + 2xz$, and $L = 2x^2 + 2y^2 + 4z^2 + 2yz + 2xz + 2xy$. Neither J nor K represents a number of the form 2(8n+3). For, if K is even, z = 2Z, K = 2M, $M = X^2 + y^2 + 5Z^2$, where X = x + Z. Since M is congruent to a sum of three squares modulo 4, it is congruent to 3 if and only if each square is odd, and then $M \equiv 7 \pmod{8}$. If J is even, x = y + 2t, J = 2N, $N = (y+t)^2 + t^2 + 5z^2 \neq 3 \pmod{8}$.

We now apply the method of §2 to prove that G represents every positive integer prime to 10. Take $\Delta = 16k$, $k = 10l \pm 3$. Then $b = 2\beta$, where $\beta = 8ka - 5$ represents infinitely many primes. Now

$$\left(\frac{-\beta}{k}\right) = \left(\frac{5}{k}\right) = \left(\frac{k}{5}\right) = -1,$$
$$\left(\frac{-\Delta}{\beta}\right) = -\left(\frac{k}{\beta}\right) = -\left(\frac{-\beta}{k}\right) = 1.$$

Since (1) represents b, which is of the form 2(8n+3), it is not equivalent to J or K. Since it represents the odd a, it is not

^{*} $D = x^2 + (y+z)^2 + (y-z)^2 \neq 4^k(8n+7)$ by Theorem I.

 $[\]dagger$ If F is even, x is even and F is the double of a form D.

equivalent to L. Hence (1) is equivalent to G, which therefore represents a.

If G represents a multiple of 5, it is the product of 5 by $g=5X^2+10Y^2+z^2$, whence G represents no $5(5n\pm 2)$. Also, g is divisible by 5 only when z is. Thus G is divisible by 25 only when it is a product of 25 by a form like G.

To prove* that G represents every 5α if $\alpha = 5n \pm 1$ is odd, employ (1) with $a = 5\alpha$, $b = 2\beta$, $\beta = 8\alpha t - 5$, $r = 2\rho$, $s = 1 \mp \alpha$. The Hessian of (1) is 10 if

$$\beta + 5 + 10\alpha\rho^2 - \alpha\beta P = 0, \qquad P = 5c \pm 2 - \alpha.$$

Take t prime to 10 and replace the first β by its value. Thus $8t+10\rho^2-\beta P=0$, $P\equiv\pm1\pmod{5}$. Hence P yields an integral value for c. Also,

(5)
$$\left(\frac{t}{\beta}\right) = \left(\frac{-\beta}{t}\right) = \left(\frac{5}{t}\right),$$

$$\left(\frac{5}{\beta}\right) = \left(\frac{\beta}{5}\right) = \left(\frac{\pm 8t}{5}\right) = -\left(\frac{t}{5}\right),$$

$$\left(\frac{-80t}{\beta}\right) = -\left(\frac{5t}{\beta}\right) = 1.$$

Next, if G is even, x = z + 2w and G = 2T, where

$$T = y^{2} + 2w^{2} + 2wz + 3z^{2}, \qquad S = x^{2} + y^{2} + 5z^{2}$$

are the only reduced forms of Hessian 5. Every positive integer a prime to 5 is represented by T. Take $\Delta = 8k, k = 10m \pm 1$. Then $b = a\Delta - 5$ represents an infinitude of primes, and

$$\left(\frac{-2}{b}\right) = 1, \ \left(\frac{-\Delta}{b}\right) = \left(\frac{k}{b}\right) = \left(\frac{-b}{k}\right) = \left(\frac{5}{k}\right) = \left(\frac{k}{5}\right) = 1.$$

Now $b \equiv 3 \pmod{8}$ is not represented by S, as proved for M. Hence (1) is equivalent to T and not S. Thus T represents a.

^{*} Or we may use the method of §2. Of the ten properly primitive reduced forms of Hessian 50, all except g fail to represent numbers $\equiv 14 \pmod{16}$. To prove that g represents $\alpha = 5n \pm 1$ when odd, take $\Delta = 80t$, whence $b = 10\beta$, $\beta = 8\alpha t - 5$; apply (5). From this proof was reconstructed the shorter one in the text.

We saw that 2T=G represents no $5(5m\pm 2)$. Thus T represents no $5(5n\pm 1)$. To prove that T represents every 5α , where $\alpha = 5n\pm 2$, employ (1) with $a = 5\alpha$, $s = 1\pm 2\alpha$. Its Hessian is 5 if

 $b + 5 + 5\alpha r^2 - \alpha bP = 0$, $P = 5c - 4\alpha \pm 4$. Replace the first term b by $8t\alpha - 5$, where t is prime to 10. Thus $8t+5r^2-bP=0$. Hence $8t(1\mp 2P)\equiv 0$, $P\equiv \pm 3 \pmod{5}$, and the resulting value of c is an integer. Also

$$\begin{pmatrix} \frac{5}{b} \end{pmatrix} = \begin{pmatrix} \frac{b}{5} \end{pmatrix} = \begin{pmatrix} \frac{\pm 16t}{5} \end{pmatrix} = \begin{pmatrix} \frac{t}{5} \end{pmatrix},$$
$$\begin{pmatrix} \frac{t}{b} \end{pmatrix} = \begin{pmatrix} \frac{-b}{t} \end{pmatrix} = \begin{pmatrix} \frac{5}{t} \end{pmatrix}, \quad \begin{pmatrix} \frac{-40t}{b} \end{pmatrix} = 1.$$

We have now proved the two theorems:

THEOREM VIII. T represents exclusively all $\neq 25^{k}(25n \pm 5)$. THEOREM IX. G represents exclusively all $\neq 25^{k}(25n \pm 10)$.

8. The Form $E = x^2 + 2y^2 + 3z^2$. We shall outline a proof of the following theorem.

THEOREM X. E represents exclusively all $\neq 4^k(16n+10)$.

The only reduced forms of Hessian 6 are E and

 $Q = x^2 + y^2 + 6z^2$, $R = 2x^2 + 2y^2 + 2z^2 + 2xy$.

To prove that E represents every positive odd integer a, take $\Delta = 9k$, k = 8t + 3. Then $b = 3\beta$, where β represents primes. Also $(-\Delta/\beta) = 1$. The resulting form (1) represents the odd a and hence is not equivalent to R. Since it represents b = 3(3n+1), it is not equivalent to Q. For, if Q is divisible by 3, both x and y are.

If E is even, then x=z+2t and E=2U, $U=y^2+2z^2+2zt+2t^2$

and conversely. In place of U we employ the like form χ of §3. To show that χ represents $a = 2\alpha$ when α is odd, take $\Delta = 9k$, k = 4t + 1. Then $b = a\Delta - 3 \equiv 6 \pmod{9}$ is not represented by the remaining reduced form B of Hessian 3 (Theorem III). Also $b = 3\beta$, $(-\Delta/\beta) = +1$. Finally, χ represents every positive odd integer $a \neq 5 \pmod{8}$. Write $\alpha = \frac{1}{2}(3a-1)$ and take $\Delta = 9k$, k = 2h+1. Then b = 6q, $q = 3ah + \alpha$. If a = 8A + 1, take h = 4t, t odd. Then q = 12Ak + 12t + 1,

$$\left(\frac{-\Delta}{q}\right) = \left(\frac{k}{q}\right) = \left(\frac{q}{k}\right) = \left(\frac{12t+1-k}{k}\right) = \left(\frac{4t}{k}\right) = \left(\frac{k}{t}\right) = 1.$$

If a = 8A + 3, take h = 4t + 1. If a = 8A + 7, take h = 4t + 1. In each case $(-\Delta/q) = 1$. In all three cases, q represents an infinitude of primes.

THEOREM XI. $x^2+2y^2+2yz+2z^2$ represents exclusively all positive integers not of the form $4^k(8n+5)$.

9. Forms in n Variables. By a simple modification of Ramanujan's determination of quaternary forms which represent all positive integers, we readily prove*

THEOREM XII. If, for $n \ge 5$, $f = a_1x_1^2 + \cdots + a_nx_n^2$ represents all positive integers, while no sum of fewer than n terms of f represents all positive integers, then n = 5 and

 $f = x^2 + 2y^2 + 5z^2 + 5u^2 + ev^2$, (e = 5, 11, 12, 13, 14, 15),

and these six forms f actually have the property stated.

After this paper was in type, I saw that J. G. A. Arndt gave[†] the Dirichlet type of proof which appears in §2 above, but not the improved new proof of §3. For the form G of §7, he treats only numbers not divisible by 5.

THE UNIVERSITY OF CHICAGO

70

^{*}Note to appear in Proceedings of the National Academy.

[†]Ueber die Darstellung ganzer Zahlen als Summen von sieben Kuben, Dissertation, Göttingen, 1925.