A CONNECTED AND CONNECTED IM KLEINEN POINT SET WHICH CONTAINS NO PERFECT SUBSET

BY B. KNASTER AND C. KURATOWSKI

1. Introduction. Professor R. L. Moore has shown in this Bulletin (vol. 32, p. 331) that there exist point sets connected and connected im kleinen* which contain no arc. We shall prove in this paper the existence of such a set containing no *perfect* subset. The set has the additional property that it is contained in a *regular curve* (in the sense of K. Menger)[†].

2. The Sierpinski Regular Curve. Let R be the Sierpinski regular curve, \ddagger defined as follows. Let T be an equilateral triangle. Divide T in 4 equal triangles. Let T_0 , T_1 , T_2 denote those three triangles which have a common vertex with T. Similarly divide each of the triangles T_0 , T_1 , T_2 in 4 equal triangles and let T_{00} , T_{01} , T_{02} , T_{10} , \cdots , T_{22} denote those having a common vertex with T_0 or T_1 or T_2 ; and so on *ad inf.*

The point set formed by the boundaries of all the triangles $T_{\alpha_1\alpha_2\cdots\alpha_k}(\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n = 0, 1, \text{ or } 2)$ and all their limit points is the regular curve R.

^{*} A point set M is said to be *connected im kleinen* (or to be regular) if, for every point p and every positive number e, there exists a positive number d such that if x is any point of M at a distance from p less than dthen x and p both lie in some connected subset of M of diameter less than e.

[†] A continuum C is called a regular curve if, for every positive number e, C can be expressed as the sum of a finite number of continua each of diameter less than e, each pair of continua having at most a finite number of points in common (see K. Menger, Mathematische Annalen, vol. 95 (1925), p. 300). Every regular curve is a continuous curve whose every subcontinuum is a continuous curve (see H. M. Gehman, Annals of Mathematics, vol. 27 (1925), p. 42).

[‡] Prace Matematyczno-Fizyczne, vol. 27 (1915). The Sierpinski curve R contains three points of degree 2, a countable set of points of degree 4, the remainder being composed of points of degree 3. See also Comptes Rendus, vol. 160 (1915), p. 302.

CONNECTED POINT SETS

3. Properties of the Sierpinski Curve. The complementary set of R is composed of a countable set of regions. Let I_0 denote the unbounded region (exterior to T) and $I_1, I_2, \dots, I_n, \dots$ the bounded regions (for n > 0, I_n forms the interior of a triangle). Let B_n denote the boundary of I_n and V the countable point set of all the vertices of the triangles $T_{\alpha_1\alpha_2\dots\alpha_k}$. The following properties of the curve R are to be noticed:

PROPERTY 1. Given a positive integer k, no point of R belongs to more than two of the triangles $T_{\alpha_1\alpha_2\cdots\alpha_k}$.

PROPERTY 2. If $m \neq n$, then $\bar{I}_m \cdot \bar{I}_n \subset V^*$.

PROPERTY 3. Given two points a and b of R and an index n, there exists a subcontinuum C of R containing a and b and such that $C \cdot B_n \subset V + a + b$.

In a similar manner we have

PROPERTY 4. Given a triangle $T_{\alpha_1\alpha_2...\alpha_k}$ and an index n, any two points a and b of $R \cdot T_{\alpha_1\alpha_2...\alpha_k}$ may be joined by a subcontinuum C of $R \cdot T_{\alpha_1\alpha_2...\alpha_k}$ such that $C \cdot B_n \subset V+a+b$.

4. Two Lemmas. We shall now prove two lemmas.

LEMMA I. If K is a bounded continuum such that $K \cdot V = 0$ and there exists no index n such that $K \subset \overline{I}_n$, then the set $K \cdot R$ contains a perfect subset.

1927]

^{*} The symbol \overline{X} denotes the set X + all its limit points. The symbol $X \subset Y$ means that X is contained in Y.

PROOF. It is evident that

 $K = K \cdot R + K \cdot I_0 + K \cdot I_1 + \cdots + K \cdot I_n + \cdots;$

hence

(1) $K = K \cdot R + K \cdot \overline{I}_0 + K \cdot \overline{I}_1 + \cdots + K \cdot \overline{I}_n + \cdots$

Suppose $K \cdot R$ does not contain any perfect subset. As $K \cdot R$ is closed, it follows that $K \cdot R$ is a finite or countable point set.

Let S_n denote the set $K \cdot I_n$ and let Q denote the set $K \cdot R - (S_0 + S_1 + \cdots + S_n + \cdots)$. Hence Q is a finite or countable set of points: p_1, p_2, \cdots . It follows by (1) that

(2)
$$K = p_1 + p_2 + \cdots + S_0 + S_1 + \cdots + S_n + \cdots$$

The right-hand side of the identity (2) is composed of mutually exclusive sets, since by Property 2, if $m \neq n$, then $K \cdot I_m \cdot K \cdot I_n \subset K \cdot V = 0$. But this contradicts a theorem of Sierpinski's* to the effect that if K is a sum of a finite (≥ 2) or countable number of mutually exclusive closed point sets, then K is not a bounded continuum. Thus the existence of a perfect subset of $K \cdot R$ is established.

LEMMA II. If Z is a subset of R such that each perfect subset of R contains a point belonging to Z, then Z+V is connected and connected im kleinen.

PROOF. Suppose that the set Z + V is not connected. Then[†] there exist two points a and b of Z + V and a bounded continuum K which separates a from b and is such that $K \cdot (Z+V) = 0$. Therefore

$$(3) K \cdot (V+a+b) = 0.$$

Since $K \cdot Z = 0$, it follows, by hypothesis, that the set $K \cdot R$ does not contain any perfect subset. By Lemma I, there exists an index *n* such that $K \subset I_n$. As $\overline{I_n} = I_n + B_n$ and $R \cdot I_n = 0$, it follows that

108

^{*} Tôhoku Mathematical Journal, vol. 13 (1918), p. 300.

[†] See our paper Sur les ensembles connexes, Fundamenta Mathematicae, vol. 2 (1921), p. 233, Theorem 37.

By Property 3, the points a and b may be joined by a subcontinuum C of R such that

(5) $C \cdot B_n \subset V + a + b.$

Since $K \cdot C = K \cdot R \cdot C$, it follows from (4) and (5) that

$$K \cdot C \subset B_n \cdot C \subset V + a + b.$$

Hence by (3) $K \cdot C = 0$, contrary to the assumption that K separates a from b. Thus the supposition that Z + V is not a connected point set leads to a contradiction.

Now let H denote any one of the triangles $T_{\alpha_1\alpha_2...\alpha_k}$. Each perfect subset of $R \cdot H$ has a common point with $Z \cdot H$. By an argument similar to that used above it may be proved (with the help of Property 4 instead of Property 3) that the set $(Z+V) \cdot H$ is connected. It follows by Property 1 that Z+V is connected im kleinen.

5. Conclusion. We may now state the following theorem.

THEOREM. There exists in the regular curve R of Sierpinski's a connected and connected im kleinen point set which contains no perfect subset.

PROOF. By a theorem due to F. Bernstein* the plane may be decomposed into two mutually exclusive subsets E and Fsuch that each perfect set contains points of both of them. It follows that each perfect subset of R has a common point with $E \cdot R$. By Lemma II the set $M = E \cdot R + V$ is connected and connected im kleinen.

The set M contains no perfect subset. For suppose P is a perfect subset of M. As the set V is countable, P-V contains a perfect subset P_1 . Hence $P_1 \, \subset E$, contrary to the assumption that P_1 has a common point with F. Thus M is a connected and connected im kleinen point set which contains no perfect subset.

The University of Warsaw

1927]

^{*} Leipziger Berichte, vol. 60 (1908).