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A METHOD FOR ACCELERATING T H E CONVER­
GENCE IN T H E PROCESS OF ITERATION* 

BY C. C. CAMP 

1. Introduction. The simplicity and directness of the pro­
cess of iteration coupled with the fact that errors committed 
along the way do not vitiate the final result have won for the 
method a certain degree of widespread popularity. This has 
become imperiled, however, by the extreme slowness of the 
convergence in many cases. The object of the present paper 
is to overcome the difficulty by furnishing a powerful method 
based on the same kind of analysis as Newton's but better 
adapted to the process of iteration. The common practice of 
taking half the sum of two successive approximations, one of 
which is too large and the other too small, is seen to be in­
adequate by the following example: x = 2+7r sin x. Here one 
iterates using the formula sin x2 = (#i — 2)/w. For x\ close to 
the true root Wi=^2/ fdxi = 1 /\ir cos #2) = —.331 nearly. The 
half sum is no improvement here and one finds the same value 
for the ninth application of the formula as by unmodified 
iteration, provided one starts with x\ as the equivalent of 164° 
in radians. This value is obtained by two applications of the 
new method. Its equivalent in degrees is 164.05131, and is 
correct to five decimals. 

By ordinary iteration it requires about a score of approx­
imations to solve 6è + 10e~~* = 10f correct to six decimals. The 
result, £ = 1.126261, is found by two applications of the new 
method by starting with &i = l . l , obtained graphically. Here 
mi — .548. One can use the half sum only when m is negative; 
and if m is near —1/3, no improvement results. The present 
method consists of one iteration and one application of for­
mula (8), which may be regarded as a formula of interpolation 

* Presented to the Society, April 2, 1926. 
f See Phillips, Differential Equations, p. 15, ex. 5. 
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or of extrapolation, according to the sign of m. In §2 the 
method is derived analytically and interpreted geometrically. 
The rapidity of the convergence is considered in §3, and the 
last three sections give modifications and extensions of the 
new method. It is obvious that one may also extend it so as 
to apply to functions which are merely tabulated by replacing 
m by a properly corrected first difference. 

2. Derivation and Interpretation of the New Method. Con­
sider the equation 

(1) ƒ(*) = 0, 

in which ƒ is a real single-valued function of a real variable x, 
continuous together with its first and second derivatives in a 
properly chosen neighborhood of each root of (1). Let ƒ be 
further restricted so t h a t / / ( x 0 ) ^ 0 , / / / ( x 0 ) ^ 0 , when / (x 0 )=0 . 
This implies that ƒ possesses only a finite number of maxima 
and minima in the neighborhood of a zero. Le t / , or a modifi­
cation of ƒ possessing the same desired zero, be decomposed 
into/i(x)—/2(x), so that 

(2) \fl(xd\ > \fi(xj)\ 

in one of these neighborhoods 

(3) #o — à ^ x g Xo + ô, 

where ô is sufficiently small. That this is always possible is 
obvious from the following choice 

ƒ0) 
(4) fi(x) s x, f2(x) = x - ——> 

M(x) 
where M(x) is a function which equals f'(x) at a root of (1) 
and possesses a continuous second derivative. By continuity 
M(x) will not vanish in some neighborhood (3). If \f{ (xo) | 
> | fi (#o) | , then by continuity there will be a neighborhood 
about XQ in which the minimum of the first is greater than the 
maximum of the second. Condition (2) will therefore be satis­
fied if it holds for the one point xo^Xi — Xj. This is evidently 
true for the choice (4). 
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By Maclaurin's Theorem we have 

Ax2
2 

(5) 

Mx) = fi(x2) + fi (x2)Ax2 + ƒƒ' (x2 + d2Ax2) 

Mx) = Mxi) + f I (x1)Ax1 + fi' (xi + diàxx) 

2 

Ax? 

2 ' 

where A#i = x — xi, Ax2 = x — x2, 0 < öi < 1, 0 < Ö2 < 1. 
If we neglect infinitesimals of the first order we obtain 

(6) fi(x2) = f2(xi), 

the approximate relation used in the process of iteration. If 
instead of (5) we use the Law of the Mean in connection with 
(6), we get 

flfa + eiAxO 
(7) x — x2 = ix — xi), 

fax2 + eiAx2) 
where O<0/ < 1 , 0<62 < 1 . By assumption (2) this shows 
that the error in the second approximation is less than that 
in the first, provided X\ lies in the neighborhood (3). Clearly x2 

will then lie in the same interval. 
If we neglect only infinitesimals of order two we have from 

(5) and (6), upon solving for x and denoting this new approx­
imation by X2, 

x2 — Xi 
(8) x2 = xi H , 

1 — m 
where 
(9) m = /{(xd/fiixi). 

If we use (5) unchanged in connection with (6) and (8) we 
get 

i/i"(*2 + 62Ax2)Ax2
2 - *ƒ,"(*! + 0iA*!)A*i2 

(10) x — x2 = 
f((x2) -fi(xd 

By calling m the coefficient of x — xi in (7) one may put this 
in the form 

L /,'(».)-«(»•) J' 
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where x2 and*/ are arguments in the numerator of (10). Since 
the quantities in brackets are bounded above and below, it is 
clear that the approximation given by formula (8) will be 
closer than both xi and x2 when Aa?i is sufficiently small. 

If we clear (8) of fractions 
and simplify we obtain 

(* i — x2) l/i O2) - f I Oi) ] 
= fi(x2)(xi — Xi)9 

or, in the figure, DF—DA 
=AF. 

Newton's method may 
be illustrated by using the 
tangents at A and G. His 
form gives 

(xi- Xi*)\f{(xi)- f{(xi)] 

= fi(xi) - / 2 ( # i ) , 

or EG-EA^AG. 
The new method may be modified by drawing at A a secant 

line with slope equal to f2 (x2) intersecting BF at K. The 
value of m is thus replaced by f2 {x2)/f( (x2) and the in­
terpretation gives (xi—x) [f2{ (x2) —f2 (x2) ] —fi (x2) (xi — x%) or 
NF—NA =AFy where %2 is the abscissa of K, and N is the 
intersection of A F and a horizontal line through K. 

3. Rapidity of the Convergence of Ordinary Iteration and of 
the New Method. For ordinary iteration one has from (7), 
Aa& = mA#i. An upper bound for \fn\ may be found by re­
placing the numerator by an upper bound | f{ | and the de­
nominator by a lower bound \f{ | in the interval XQ— | A#I | g x 
^x0+ I Axi |. If the resulting quotient is called M, one has a 
method of determining an upper bound for the number of 
successive approximations required for attaining a given de­
gree of accuracy by pure iteration. For instance, if the error 
allowed is 10"**, since obviously |A# 3 | ^ M 2 | A # i | and in 
general | Axt | ̂  M1"1 | A#i |, we need simply to determine i — 1 
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from the relation M*~~l1 A#i | = 10""*. Hence the number sought 
is 

(12) n = i — 1 = ( — k — logio|Affi|)/logioAf. 

Likewise one may obtain a lower bound for the number by 
replacing M by a lower bound for | in |. | A#i | may be replaced 
by a lower bound in the latter case and by an upper bound in 
(12). 

From (11) one can estimate the errors made by using (8) in 
place of (5). Since the quantities in brackets are bounded 
above and below, evidently 

(13) \x — X21 < &A#i2, 

where k is a constant. 
By repeated applications the sequence of values obtained 

from 

(14) 

Xk — Xk-l 
Xk = Xk-i H ; 

1 — m 

/î(sjfe) = f*(xk-i), ( A - 2 ,3 ,4 , ) 

where m =/2 ' (xk-i)/f{ (xk), will have errors which are not great­
er than 

i i ! 
pe2, pe4, pe8, • • • , where pe == |Aa?i | , p « — • 

k 
In Newton's method one has similarly 

/i"(*i + 03A*i) - /2"(*i + 04A*i) 1 
(15) x — #2 -iA^f-

0 < 03 < 1 , 0 < 04 < 1 . 

The two methods coincide when fi(x) is a linear function. 
But the new method is more powerful than Newton's in the 
following extensive cases: 

Case I. When fi(x) is non-linear, f{' (x) is of constant sign 
and ƒ2 (x) is linear in the interval 

(16) XQ — \Axi I g x ^ xo + |A#i I ; 
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Case II. When / i"(x), f" (x) are of opposite sign and 
H W , fi (x) are each of constant sign in some interval (16). 

We choose A^i small enough so that an application of New­
ton's method will give x2 a better value than xi. It is sufficient* 
if x\ is so chosen that 

ƒ l ( * i ) - /2<>l) A 
< 

IB 

where A is the minimum of | f{ (x) —fi (x) | and B is the maxi­
mum of | ƒ ƒ ' (x) —f" (x) | in the interval between xi and 

2[/i(*i) - / 2 ( * i ) ] 
Xl . 

Both cases may be proved geometrically. In Case I, since 
I ƒ/ (x) | > | ƒƒ (x) |, evidently/i will be monotonie and have a 

continuously turning tangent in view of the fact that ƒƒ' is of 
constant sign. The same is true for fi(x) and f2(x) in Case II. 
In either case let these curves intersect at C whose abscissa is 
Xo in the restricted interval. Draw tangents at A on / i and at 
B on f2 for x = xi. Call the intersection of the tangents D. A 
horizontal line through B cuts jfi at E, at which a tangent is 
drawn intersecting BD at F. The tangent at any point of arc 
A C will cut BD in a point of the line segment DG where G is 
the point on BD with the same abscissa as C. The abscissa 
x2 of F will therefore be between x and x0 the true value of 
the root. 

As an illustration of Case I let us take the famous Wallis 
equation, namely x3 = 2x+5 . Here if #i = 2, Wi = .1541. By 
Barlow's Tables l / ( l - m i ) = 1.182, *2 = 2.08, x2 = 2.09456. By 
iteration, x3 = 2.094552776, and £3 = 2.094551483, where 
1/(1 —m2) = 1.179. The result of two applications of the new 
method thus furnishes nine digits correct.f The same number 
is furnished by Newton's method with three applications. 
Iteration requires six operations to get six digits correct. 

* Cf. Cauchy, Œuvres Complètes, (2), vol 4 (1899), p. 576, Theorem 
III. 

t Cf. Whittaker and Robinson, The Calculus of Observations, p. 86. 
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4. Modifications of the Method. Just as one may modify 
Newton's method by various substitutions for the derivative, 
so it is expedient at times to change the value of m. One may 
determine approximately by sketching the curves whether a 
secant line drawn at x = xi on f2 with a slope f{ (x2) will tend 
to accelerate the convergence still further in the early terms 
of the sequence. With certain combinations of / i and f2 this 
also simplifies the form of m and is very effective in diminish­
ing the arithmetic. Formula (9) then becomes 

(17) m = U(x2)/f{(x2), 

and both advantages are shown in the following example: 
4x2 = x3 + 5. Here m = 3x2/8. If we take #1 = 1.4 then 
x2 = 1.391402, and by the modified form £2 = 1.38202 whereas 
x2 = 1.3817745 by (8), (9). Then by iteration from x2 we have 
x3 = 1.381994 and by (17) £8 = 1.38196603. This is correct to 
eight figures. 

One may make small errors either accidentally, by choosing 
simple values for 1/(1— m) or by using the same value of 
m more than once. The final result is correct as illustrated by 
the problem, ;y = .5 —logio ;y. By inspection the initial value 
found from a table was y\ = .6675; m was taken as —.65 and 
by error y2 was found to be .6756. Accordingly 552 = 3/i + -606 
X.0081 = .6724. By (6) yz = .6723723 and by using 606 again 
5̂3 = .6723832 which checks to seven digits. 

If the ƒ s have simple derivatives up to the third order, it 
may be desirable to use a formula which neglects infinitesi­
mals of only the third order or higher. One needs merely to 
extend equations (5) to one more term each and then keep 
terms of the second order. It is easy to derive the new ap­
proximation by using (6) and solving a quadratic in x. If we 
designate the new approximation by x2, we have 

(18) x2(fi" - U') = fi - f{ + x2f{' - *i/2" 

+ [(ƒ/ - ƒ 2 ' ) 2 + 2(x2- xOQ]"*, 

where Q = (fif{'-flfn+lfa-xtfl'fi', where ƒ ƒ , ƒ/ ' have 
the argument x2t and where f(, f" have the argument #1. One 
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application each solves 4x2 = xd+5 and the Wallis equation 
with errors beyond the sixth decimal place, provided the first 
approximations are 1.4 and 2, respectively. 

5. Extensions to Systems of Equations. The method may 
be extended to a system of n equations in n unknowns. Let 
us consider for simplicity the case n = 2, and let the equations 
to be solved be 

(19) f(*,y) = 0, g(x,y) = 0. 

Assume that the slopes of these curves at a common point 
(xo, ^o) are different and that in the neighborhood of each 
intersection the ordinate of each curve represents a single-
valued function of x possessing continuous derivatives up to 
the second order. At a solution (x0, yo), the Jacobian does 
not vanish, i. e., 

\fxgx\ 

\Jv gy\ 
(20) J = 7*0. 

Let ƒ be broken up into fi(x, y) —fzix, y) and g similarly 
into g\{x, y)—gi(x, y) so that at the solution sought 

• * / l 

dy 
> 

df2 

dy 
(21) 

also, if possible so that 

i \ f 

and 
agi 

dx 
> 

dg* 

dx 

(22) 
+ Ihv I < * \hv I 
+ Ig2*l < r\gix\ ' 

where 0 < r < l , and the subscripts x and y denote partial dif­
ferentiations. Condition (22) is sufficient to insure the con­
vergence of the sequence of iterated values obtained from 
the system 

(23) Mxl9y2) = /2(*i,yi), 

(24) gi(*2,yù = gi(xi,yi), 

since on account of continuity these inequalities will still hold 
if we keep x and y in sufficiently small intervals about xQ and 
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3>o, respectively. To prove this it is sufficient to expand the ƒ s 
and g's of x and y by Taylor's theorem about the points indi­
cated by the arguments in (23), (24) and then employ these 
equations. The errors in the sequences of values for x and y 
will then have zero for their limit. 

By extending the expansions to one more term each and then 
retaining only infinitesimals of order two, one obtains readily 
the analog of (8), namely 

(25) 

X2 = Xi + 

J2 = yi + 

1 

D 

1 

( j 2 ~ yi)fly, fly - fîv 

(x2 ~ Xi)giz> gly — gly 

fix" fax, (3>2 ~ yi)fly 

glx ~ g2s , (#2 — Xi)gix 

where D is the form taken by / when ƒ, g are separated into 
parts and the arguments are changed to agree with (23), (24). 
These same arguments are to be understood in the partial 
derivatives of (25). I t is clear that D will also be different from 
zero for a sufficiently small neighborhood of (x0, 3>o). It can 
be seen that if (xi, y\) is in such a neighborhood then (x2, J2) 
will be also, on account of (22). When | x^ — Xi |, | y^—yi \ are 
sufficiently small, (x2l y2) will also be inside this neighborhood 
and the sequence of values (xk, yk), (xjc, yh) found by repeat­
ing the iterations 

(26) 
Mxk,yk+i) = f2(xk,yk)9 

gi(%k+i,yk) = £2(3*, y* ) , 

and applying (25) successively will converge to the solution 

(*o, Jo). 
It is obvious how the formulas would be written for the 

case of a greater number of variables n. 
In case the inequalities (22) do not hold for a given system 

it is easy to show that (19) can always be replaced by a new 
system 

(F(x,y) = 0, 

\G(x9y) = 0, 
(190 
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which will satisfy (21), (22), when rewritten in the form 
FzzFi — F2, G = G\ — G2. The new system will have the same 
solution as (19) if (20) is satisfied, provided (x, y) is confined 
to a sufficiently small region about (x0, yo). I t is sufficient to 
choose 

^ r r
 1 I ƒ ( * , ? ) , i(*>y) 

(27) Gi = x, G-2 = x 
J \fv(%,y), gv(*,y) 

(28) F l S F2 EEE - i - | / ^ ^ ) ^ « ( ^ , y ) 
/ I f(x,y), g(*,y) 

The amount of arithmetic work may be shorter for this 
change in the equations to be solved than for more direct 
methods by which (19) can still be solved without (22) being 
satisfied. 

Geometrically one may solve a set (19) by the theory of the 
method for one variable, provided 7V0 , i. e., the curves (19) 
intersect without being tangent to each other. We assume as 
before that the functions defined by the graphs of (19) possess 
continuous second derivatives. By a proper choice of ƒ s and 
g's suppose (21) is satisfied and that at (x0, yo) the slope of ƒ 
is numerically less than that of the curve g. One may proceed 
as follows: 

First Method. After solving by a table, by interpolation, 
or graphically for an approximate solution (xu yi) of (19), one 
tests the value of y\ by trial in (23) and then solves (24) for x2. 
Next comes an application of the formula 

x2 — x\ 
(29) x2 = xx + 1 — wa 

where mx^g2x(xi, yi)/gix(x2, yi). Equation (23) is then solved 
in which xi is replaced by x2 and yi by yi as corrected above. 
One then employs the formula 

(30) y2 = yx + y*~ yi 

1 — my 

where rny=f2y(x2, yi)/fiy(x2j y2). The process is repeated until 
a set (xk, yk) is the same as (xk-u 3>&-i). 
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Second Method. This is the same before the application of 
(29), in place of which one uses 

X2 — xi slope of ƒ at (xi,yi) 
(31) X2 = xi H > where m = ; 

1 — m slope of g dit (x2, yd 
, _ CA* - /2*)(gly - g2y) 
(32) m — > 

(fly - fjiv)(gix - g2x) 

wherein the arguments are the same as in (23), (24). The pro­
cess is repeated as in the first method until the required accu­
racy is reached. The following example illustrates the method : 

f(x,y) = 5yz + x2 — 2xy — 4 = 0, 

g(x,y) = xz + 2y2 —1 = 0. 

Take fx = 5y£, f2 = 2xiyi — Xi2+4, gi = l—x£, g2 = 2y?. For a 
first approximation start with Xi= —.65, yi = .8. The second 
of conditions (22) is not satisfied and it is easily seen that (25) 
will give a diverging sequence. Nevertheless we can still obtain 
a solution as follows: 

The value yi improved by trial gives .7977'; x2 from (24) 
= - .64844. Now m = - . 6 7 5 , hence from (31) £ 2 = - . 6 4 9 1 . 
From (23) y2 = .798235. In (30) my= - .1358 and y2 = .79817; 

Xz= - .649658 from (24) ; and from (31) if we use m= - .6725 
then xz= - .649434; y8 = .798070, y8 = .798082 if we take 
my— —.136; x4= —.6494036, x±— —.649416 where m is not re­
calculated. Finally yé =.7980875 and y4 = .798087, where mv 

is kept as —.136. The results are correct to six decimals. 

6. Extension to the Determination of Complex Roots. Just 
as Newton's method remains valid, so the method of iteration 
is applicable to the computation of complex roots. Moreover, 
the latter method is simpler and in case the modulus of m is 
sufficiently small it has the usual advantages. However, when 
the convergence is slow it is imperative to have a method which 
leads more rapidly to the root. That the present method will 
accelerate the convergence as in the case of real roots is evi­
dent since Taylor's Theorem goes over with a slight change to 
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expansions in complex numbers. The arithmetic of iteration 
is easier than for Newton's method and the application of 
formula (8) is easier after one has found a few approximations 
than a change to Newton's method at that stage of the cal­
culation. 

The method will be illustrated by an example already solved 
by Cauchy* although he has erroneously stated that his final 
result, (163), p. 490, is correct up to the seventh decimal. If 
we write his equation, ex — x = 0, in the form #2= log Xi then 
near the root sought | m | is near .7275. Hence pure iteration 
gives a slowly converging sequence, which will approach the 
root spirally from Xi = i, as follows: 

*, 1.5708*, .45158 + 1.5708*, .49129 + 1.29086*, 
.32295 + 1.20713*, .22281 + 1.3094*, .28384 + 1.40225*, 
.35807 + 1.3715*, • • • 

If after the third approximation is computed formula (8) 
is employed, the fourth application of the new method gives 
the root £7 as.3181315 + 1.3372357*,which is less thanCauchy's 
result by 2 in the seventh decimal of the real part. That the 
value here given is correct and that Cauchy's is incorrect has 
been verified by the use of Peter's Zehnstellige Logarithmen, 
by which the calculation has also been extended to nine decim­
als. Cauchy used five applications of Newton's method start­
ing with Xi = 0, whereas the new method by the same number 
of applications furnishes nine decimals as follows : 

xi = *; x2 = 1.5708i, x2 = .2854+ 1.2854**; 
xz = .2751 + 1.3523**, 5* = .3310 + 1.3376i; 
Xi = .3206 + 1.3282*, x4 = .318165 + 1.337276*'; 
x, = .31816565 + 1.3371892*, xb =.3181315 + .3372358*; 
x6 = .318131574+ 1.3372357215**, x% = .318131505+1.337235701*. 

THE UNIVERSITY OF ILLINOIS 

* Œuvres, IIe Série, Tome IV, p. 485. 


