A QUADRATIC ALGEBRA AND ITS APPLICATION TO A PROBLEM IN DIOPHANTINE ANALYSIS*

BY G. E. WAHLIN

1. Introduction. Dickson \dagger has studied the problem of the application of algebras in the determination of the solutions of certain Diophantine equations. In the following pages I shall define a system which is a generalization of those defined by Clifford \ddagger and Lipschitz.§

The algebra as here defined is sufficient for the application which I wish to make. By further restrictions on the basal elements we can define an algebra which is intimately connected with the theory of quadratic forms. This I hope to show in a later paper.
2. Quadratic Extensions of a Field. We shall assume a certain fundamental field K on which we shall construct an algebra by the adjunction of certain new elements. Let us first consider a quadratic equation

$$
\begin{equation*}
x^{2}-a x+b=0 \tag{1}
\end{equation*}
$$

whose coefficients are numbers of K. We shall denote by r a root of this equation. This root r is so defined that $r^{2}-a r+b=0$ but it does not satisfy a linear equation with coefficients in K, even in the case when the equation (1) is reducible in this field. If $b=0$, a simple linear transformation will transform (1) into an equation in which the last term is not zero and we shall therefore assume that all the quadratic equations with which we are concerned are such that the term which does not involve x is different from zero.

[^0]The multiplication of r by any number of K shall be commutative and in any product of r and numbers of K multiplication shall be associative. We shall also assume the distributive law.

By a quadratic extension of K we mean the set of all elements of the form $m r+n$ where m and n are numbers of K.

Since $r^{2}=a r-b$ any power of r is equal to a linear function of r and hence it is easily seen that the sum, difference or product of any two elements of the quadratic extension of K belong to the same. Moreover, since r does not satisfy a linear equation in $K, m r+n$ is zero when and only when m and n are both zero.

In the case when the equation (1) is irreducible the quadratic extension of K is closed also with respect to division and is a field which is isomorphic with the ordinary algebraic number field defined by the equation. We shall call this a quadratic extension of the first type.

When the equation (1) is reducible in K we may write $x^{2}-a x+b=\left(x-\rho_{1}\right)\left(x-\rho_{2}\right)$. Due to the assumption of the commutative and distributive laws we see that this equality is true when we replace x by r and hence

$$
\left(r-\rho_{1}\right)\left(r-\rho_{2}\right)=r^{2}-a r+b=0
$$

But $r-\rho_{1} \neq 0$ and $r-\rho_{2} \neq 0$ since r does not satisfy an equation of the first degree. Hence $r-\rho_{1}$ and $r-\rho_{2}$ are proper divisors of zero and a unique and universal division process is not possible. We shall call this a quadratic extension of the second type.

It is easily seen that in either of the two types of quadratic extensions the multiplication is associative and commutative.

The element r as above defined cannot satisfy more than one quadratic equation in K, for if we have $r^{2}-a r+b=0$, and also $r^{2}-a^{\prime} r+b^{\prime}=0$, we find $\left(a^{\prime}-a\right) r-\left(b^{\prime}-b\right)=0$, which is impossible unless $a^{\prime}=a$ and $b^{\prime}=b$.
3. Conjugate Roots. Let us next consider the element $a-r$ and substitute it for x in (1). This gives

$$
\begin{aligned}
(a-r)^{2}-a(a-r)+b & =a^{2}-2 a r+r^{2}-a^{2}+a r+b \\
& =r^{2}-a r+b=0
\end{aligned}
$$

Hence $a-r$ is also a solution of (1). We shall write $r^{\prime}=a-r$ and speak of r and r^{\prime} as a pair of conjugate roots of (1).

From the definition of r^{\prime} it follows that $r+r^{\prime}=a$ and $r r^{\prime}=r^{\prime} r=(a-r) r=a r-r^{2}=b$. The sum $S(r)=r+r^{\prime}$ is called the trace of r, and the product $r r^{\prime}=N(r)$ is called the norm of r.
4. An Algebra of Order Four. Let us consider a ternary quadratic form

$$
Q\left(x, y_{1}, y_{2}\right)=x^{2}+b_{1} y_{1}^{2}+b_{2} y_{2}^{2}+a_{1} x y_{1}+a_{2} x y_{2}+c y_{1} y_{2}
$$

and let us suppose that r_{1} and r_{2} are a pair of elements such that with another, associated, pair of elements r_{1}^{\prime} and r_{2}^{\prime} and a properly defined multiplication

$$
\left\{\begin{align*}
& Q\left(x, y_{1}, y_{2}\right)=\left(x+r_{1} y_{1}+r_{2} y_{2}\right)\left(x+r_{1}^{\prime} y_{1}+r_{2}^{\prime} y_{2}\right) \tag{2}\\
&=x^{2}+r_{1} r_{1}^{\prime} y_{1}^{2}+r_{2} r_{2}^{\prime} y_{2}^{2}+\left(r_{1}+r_{1}^{\prime}\right) x y_{1} \\
&+\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{2}^{\prime}\right) x y_{2}+\left(r_{1} r_{2}^{\prime}+r_{2} r_{1}^{\prime}\right) y_{1} y_{2}
\end{align*}\right.
$$

Then

$$
\begin{gather*}
r_{1}+r_{1}^{\prime}=a_{1}, r_{2}+r_{2}^{\prime}=a_{2}, r_{1} r_{1}^{\prime}=b_{1}, r_{2} r_{2}^{\prime}=b_{2}, \tag{3}\\
r_{1} r_{2}^{\prime}+r_{2} r_{1}^{\prime}=c .
\end{gather*}
$$

We shall assume that the coefficients $a_{1}, a_{2}, b_{1}, b_{2}, c$ belong to the field K and that each of the elements r_{1} and r_{2} has a multiplication with the elements of K subject to the assumptions of the preceding sections.

From (2) we have

$$
Q(x,-1,0)=x^{2}-a_{1} x+b_{1}=\left(x-r_{1}\right)\left(x-r_{1}^{\prime}\right)
$$

and hence r_{1} and r_{1}^{\prime} are a pair of conjugate roots of the equation $Q(x,-1,0)=0$. In the same way, r_{2} and r_{2}^{\prime} are a pair of conjugate roots of $Q(x, 0,-1)=0$, and $r_{1}+r_{2}$ and $r_{1}^{\prime}+r_{2}^{\prime}$
a pair of conjugate roots of $Q(x,-1,-1)=0$. Hence we have the following relations:

$$
\begin{align*}
& r_{1}^{2}=a_{1} r_{1}-b_{1} \tag{4}\\
& r_{2}^{2}=a_{2} r_{2}-b_{2} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\left(r_{1}+r_{2}\right)^{2}=\left(a_{1}+a_{2}\right)\left(r_{1}+r_{2}\right)-b_{1}-c-b_{2} \tag{6}
\end{equation*}
$$

and (6) can be written in the form

$$
\begin{aligned}
r_{1}^{2}+r_{1} r_{2}+r_{2} r_{1}+r_{2}^{2}= & a_{1} r_{1}+a_{2} r_{1} \\
& -a_{1} r_{2}+a_{2} r_{2}-b_{1}-c-b_{2}
\end{aligned}
$$

which by (4) and (5) reduces to

$$
\begin{equation*}
r_{1} r_{2}+r_{2} r_{1}=a_{2} r_{1}+a_{1} r_{2}-c \tag{7}
\end{equation*}
$$

Let us now consider two elements $u_{0}+u_{1} r_{1}+u_{2} r_{2}$ and $u_{0}+u_{1} r_{1}^{\prime}+u_{2} r_{2}^{\prime}$. Their sum is $2 u_{0}+u_{1} a_{1}+u_{2} a_{2}$ and their product is $Q\left(u_{0}, u_{1}, u_{2}\right)$ and hence the u_{0}, u_{1}, u_{2} being numbers of K we see that the sum and product are numbers of K and hence the two elements as given are a pair of conjugate roots of a quadratic equation in K.

We shall now form a new extension of K by the adjunction of the two elements r_{1} and r_{2} subject to the above specified conditions and further assume that $r_{1} r_{2}$ and $r_{2} r_{1}$ are also roots of quadratic equations. We also suppose that

$$
\begin{equation*}
S\left(r_{1} r_{2}+r_{2} r_{1}\right)=S\left(r_{1} r_{2}\right)+S\left(r_{2} r_{1}\right) \tag{8}
\end{equation*}
$$

Let $q(x)=0$ be the quadratic equation of which $r_{1} r_{2}$ is a root. Using the associative law, which we shall also assume, we have

$$
\begin{gathered}
\frac{1}{r_{1}}\left(r_{1} r_{2}\right) r_{1}=r_{2} r_{1}, \\
\frac{1}{r_{1}}\left(r_{1} r_{2}\right)^{2} r_{1}=\frac{1}{r_{1}}\left(r_{1} r_{2}\right) r_{1} \frac{1}{r_{1}}\left(r_{1} r_{2}\right) r_{1}=\left(r_{2} r_{1}\right)\left(r_{2} r_{1}\right)=\left(r_{2} r_{1}\right)^{2} ;
\end{gathered}
$$

and hence

$$
\frac{1}{r_{1}} q\left(r_{1} r_{2}\right) r_{1}=q\left(r_{2} r_{1}\right) .
$$

Since $q\left(r_{1} r_{2}\right)=0$, it follows that $q\left(r_{2} r_{1}\right)=0$ and $r_{1} r_{2}$ and $r_{2} r_{1}$ are roots of the same equation, and $S\left(r_{1} r_{2}\right)=S\left(r_{2} r_{1}\right)$. As above, we here assume that b_{1} and b_{2} are not zero. It would suffice to make this assumption regarding only one of them. Using (7), and (8), we then have

$$
\begin{aligned}
S\left(r_{1} r_{2}\right)+S\left(r_{2} r_{1}\right) & =2 S\left(r_{1} r_{2}\right)=a_{2} S\left(r_{1}\right)+a_{1} S\left(r_{2}\right)-2 c \\
& =2 a_{1} a_{2}-2 c .
\end{aligned}
$$

Thus

$$
\begin{equation*}
S\left(r_{1} r_{2}\right)=a_{1} a_{2}-c=a_{12}, \tag{9}
\end{equation*}
$$

where for the present we use a_{12} to denote the trace of $r_{1} r_{2}$. The conjugate root $\left(r_{1} r_{2}\right)^{\prime}$ of $r_{1} r_{2}$ is then $a_{12}-r_{1} r_{2}$.

If we now use the equations (3), we have

$$
\begin{aligned}
a_{12} & =a_{1} a_{2}-r_{1} r_{2}^{\prime}-r_{2} r_{1}^{\prime}=a_{1} a_{2}-r_{1}\left(a_{2}-r_{2}\right)-\left(a_{2}-r_{2}^{\prime}\right) r_{1}^{\prime} \\
& =a_{1} a_{2}-a_{2}\left(r_{1}+r_{1}^{\prime}\right)+r_{1} r_{2}+r_{2}^{\prime} r_{1}^{\prime} \\
& =a_{1} a_{2}-a_{1} a_{2}+r_{1} r_{2}+r_{2}^{\prime} r_{1}^{\prime} .
\end{aligned}
$$

Therefore $r_{2}^{\prime} r_{1}^{\prime}=a_{12}-r_{1} r_{2}$, and we conclude that $r_{2}^{\prime} r_{1}^{\prime}$ is the conjugate of $r_{1} r_{2}$. We shall denote $r_{1} r_{2}$ by r_{12} and $r_{2}^{\prime} r_{1}^{\prime}$ by $r_{12}{ }^{\prime}$. We now have the following relations:

$$
\begin{align*}
r_{1} r_{12} & =r_{1} r_{1} r_{2}=r_{1}^{2} r_{2}=a_{1} r_{1} r_{2}-b_{1} r_{2} a_{1} r_{12}-b_{1} r_{2}, \tag{10}\\
r_{12} r_{2} & =r_{1} r_{2} r_{2}=r_{1} r_{2}^{2}=a_{2} r_{1} r_{2}-b_{2} r_{1}=a_{2} r_{12}-b_{2} r_{1}, \tag{11}\\
r_{12} r_{1} & =r_{1}\left(r_{2} r_{1}\right)=r_{1}\left(a_{2} r_{1}+a_{1} r_{2}-c-r_{1} r_{2}\right) \tag{12}\\
& =a_{2}\left(a_{1} r_{1}-b_{1}\right)+a_{1} r_{12}-c r_{1}-a_{1} r_{12}+b_{1} r_{2} \\
& =-a_{2} b_{1}+a_{12} r_{1}+b_{1} r_{2}, \\
r_{2} r_{12} & =\left(r_{2} r_{1}\right) r_{2}=\left(a_{2} r_{1}+a_{1} r_{2}-c-r_{1} r_{2}\right) r_{2} \tag{13}\\
& =a_{2} r_{12}+a_{1} a_{2} r_{2}-a_{1} b_{2}-c r_{2}-a_{2} r_{12}+b_{2} r_{1} \\
& =-a_{1} b_{2}+b_{2} r_{1}+a_{12} r_{2} .
\end{align*}
$$

The equations (4), (5), (10), (11), (12), (13) can be summed up in the following multiplication table.

	1	r_{1}	r_{2}	r_{12}
1	1	r_{1}	r_{2}	r_{12}
r_{1}	r_{1}	$a_{1} r_{1}-b_{1}$	r_{12}	$-b_{1} r_{2}+a_{1} r_{12}$
r_{2}	r_{2}	$-c+a_{2} r_{1}+a_{1} r_{2}-r_{12}$	$a_{2} r_{2}-b_{2}$	$-a_{1} b_{2}+b_{2} r_{1}+a_{12} r_{2}$
r_{12}	r_{12}	$-a_{2} b_{1}+a_{12} r_{1}+b_{1} r_{2}$	$-b_{2} r_{1}+a_{2} r_{12}$	$a_{12} r_{12}-b_{1} b_{2}$

Let us now consider the extension of K consisting of all elements of the form $x_{0}+x_{1} r_{1}+x_{2} r_{2}+x_{12} r_{12}$, where x_{0}, x_{1}, x_{2}, and x_{12} are numbers of K. We have seen that $r_{1} r_{2}$ and $r_{2}^{\prime} r_{1}^{\prime}$ are a pair of conjugate roots of a quadratic equation. Let us next consider $r_{1} r_{12}$ and $r_{12}^{\prime} r_{1}^{\prime}$. Their product is $b_{1}^{2} b_{2}$, a number of K. From the multiplication table

$$
\begin{aligned}
r_{1} r_{12} & =-b_{1} r_{2}+a_{1} r_{12}, \\
r_{12}^{\prime} r_{1}^{\prime} & =\left(a_{12}-r_{12}\right)\left(a_{1}-r_{1}\right)=a_{1} a_{12}-a_{12} r_{1} \\
& \quad-a_{1} r_{12}+r_{12} r_{1} \\
& =a_{1} a_{12}-a_{12} r_{1}-a_{1} r_{12}-a_{2} b_{1}+a_{12} r_{1}+b_{1} r_{2} \\
& =a_{1} a_{12}-a_{2} b_{1}+b_{1} r_{2}-a_{1} r_{12},
\end{aligned}
$$

whence

$$
r_{12}^{\prime} r_{1}^{\prime}=-b_{1} r_{2}^{\prime}+a_{1} r_{12}^{\prime}
$$

and

$$
r_{1} r_{12}+r_{12}^{\prime} r_{1}^{\prime}=a_{1} a_{12}-a_{2} b_{1}
$$

a number of K. Hence as before $r_{1} r_{12}$ and $r_{12}^{\prime} r_{1}^{\prime}$ are a pair of conjugate roots of a quadratic equation with coefficients in K, and $S\left(r_{1} r_{12}\right)=a_{1} a_{12}-a_{2} b_{1}$. In the same way we can show that $S\left(r_{12} r_{1}\right)=a_{1} a_{12}-a_{2} b_{1}$ and $S\left(r_{2} r_{12}\right)=S\left(r_{12} r_{2}\right)=a_{2} a_{12}-b_{2} a_{1}$ and in all cases the conjugate of the product is the product of the conjugates in reversed order. Hence

$$
\begin{align*}
& -a_{2} b_{1}=S\left(r_{12} r_{1}\right)-S\left(r_{1}\right) S\left(r_{12}\right) \tag{14}\\
& -a_{1} b_{2}=S\left(r_{12} r_{2}\right)-S\left(r_{2}\right) S\left(r_{12}\right)
\end{align*}
$$

From the multiplication table

$$
\begin{align*}
& r_{1} r_{12}+r_{12} r_{1}=-a_{2} b_{1}+a_{12} r_{1}+a_{1} r_{12} \tag{15}\\
& r_{2} r_{12}+r_{12} r_{2}=-a_{1} b_{2}+a_{12} r_{2}+a_{2} r_{12} \tag{16}
\end{align*}
$$

By (14) and the equation $-c=a_{12}-a_{1} a_{2}$, we can then write a common form for (7), (15), (16) as follows:

$$
\begin{equation*}
r_{i} r_{j}+r_{j} r_{i}=S\left(r_{i} r_{j}\right)-S\left(r_{i}\right) S\left(r_{j}\right)+S\left(r_{j}\right) r_{i}+S\left(r_{i}\right) r_{j} \tag{17}
\end{equation*}
$$

From this we get

$$
\begin{align*}
r_{i} r_{j}^{\prime}+r_{j} r_{i}^{\prime} & =r_{i}\left(a_{j}-r_{j}\right)+r_{j}\left(a_{i}-r_{i}\right) \tag{18}\\
& =S\left(r_{j}\right) r_{i}+S\left(r_{i}\right) r_{j}-r_{i} r_{j}-r_{j} r_{i} \\
& =S\left(r_{i}\right) S\left(r_{j}\right)-S\left(r_{i} r_{j}\right)
\end{align*}
$$

which is a number of K. Let us now consider two elements

$$
\begin{aligned}
\xi & =x_{0}+x_{1} r_{1}+x_{2} r_{2}+x_{12} r_{12} \\
\xi^{\prime} & =x_{0}+x_{1} r_{1}^{\prime}+x_{2} r_{2}^{\prime}+x_{12} r_{12}^{\prime}
\end{aligned}
$$

Then $\xi+\xi^{\prime}=2 x_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{12} x_{12}$ a member of K. Also

$$
\begin{align*}
\xi \xi^{\prime}=x_{0}^{2} & +b_{1} x_{1}^{2}+b_{2} x_{2}^{2}+b_{1} b_{2} x_{12}^{2}+a_{1} x_{0} x_{1}+a_{2} x_{0} x_{2} \tag{19}\\
& +a_{12} x_{0} x_{12}+\left(r_{1} r_{2}^{\prime}+r_{2} r_{1}^{\prime}\right) x_{1} x_{2} \\
& +\left(x_{1} x_{12}^{\prime}+r_{12} r_{1}^{\prime}\right) x_{1} x_{12}+\left(r_{2} r_{12}^{\prime}+r_{12} r_{2}^{\prime}\right) x_{2} x_{12}
\end{align*}
$$

and it may be shown that $\xi \xi^{\prime}=\xi^{\prime} \xi$. By (18) and (19) we see that $\xi \xi^{\prime}$ is also a number of K and hence ξ and ξ^{\prime} are a pair of conjugate roots of a quadratic equation with coefficients in K.

Consider next the two elements
$\alpha=u_{0}+u_{1} r_{1}+u_{2} r_{2}+u_{12} r_{12}, \quad \beta=v_{0}+v_{1} r_{1}+v_{2} r_{2}+v_{12} r_{12}$.
Then

$$
\alpha \pm \beta=u_{0} \pm v_{0}+\left(u_{1} \pm v_{1}\right) r_{1}+\left(u_{2} \pm v_{2}\right) r_{2}+\left(u_{12} \pm v_{12}\right) r_{12}
$$

and by the multiplication table we can also express the product in the same form. Hence the set of elements is closed with respect to addition, subtraction, and multiplication.

Since the product $r_{i} r_{j}$ is a linear function of r_{1}, r_{2}, r_{12} and its conjugate $r_{j}^{\prime} r_{i}^{\prime}$ is the same linear function of $r_{1}^{\prime}, r_{2}^{\prime}, r_{12}^{\prime}$ we
see that $\alpha \beta$ and $\beta^{\prime} \alpha^{\prime}$ are the same linear function of r_{1}, r_{2}, r_{12} and $r_{1}^{\prime}, r_{2}^{\prime}, r_{12}^{\prime}$, respectively. Hence $\alpha \beta+\beta^{\prime} \alpha^{\prime}$ is a number of K and $\alpha \beta \cdot \beta^{\prime} \alpha^{\prime}=N(\alpha) N(\beta)$ is also a number of K. Therefore, in general for all products the conjugate of a product is the product of the conjugates in the reversed order.

If we let $r_{0}=r_{0}^{\prime}=1$, we may write

$$
\begin{aligned}
& \alpha \beta=\sum_{i, j} u_{i} v_{j} r_{i} r_{j} \\
& \beta \alpha=\sum_{i, j} u_{i} v_{j} r_{j} r_{i}
\end{aligned}
$$

whence we have

$$
\begin{aligned}
\alpha \beta+\beta \alpha= & \sum_{i, j} u_{i} v_{j}\left(r_{i} r_{j}+r_{j} r_{i}\right) \\
= & \sum_{i, i} u_{i} v_{j}\left[S\left(r_{i} r_{j}\right)-S\left(r_{i}\right) S\left(r_{j}\right)+S\left(r_{i}\right) r_{j}+S\left(r_{j}\right) r_{i}\right] \\
= & \sum_{i, j} u_{i} v_{j} S\left(r_{i} r_{j}\right)-\sum_{i} u_{i} S\left(r_{i}\right) \sum_{i} v_{j} S\left(r_{j}\right) \\
& \quad+\sum_{i} u_{i} S\left(r_{i}\right) \sum_{i} v_{j} r_{j}+\sum_{i} v_{j} S\left(r_{j}\right) \sum_{i} u_{i} r_{i} \\
= & S(\alpha \beta)-S(\alpha) S(\beta)+S(\alpha) \beta+S(\beta) \alpha .
\end{aligned}
$$

This shows that the equation (17) is true for any pair of elements α and β of the algebra.
5. Extension of the Algebra. Let us next consider a general quadratic form in $n+1$ variables

$$
Q\left(x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i, j} a_{i j} x_{i} x_{j}
$$

having $a_{00}=1$ and $a_{i j}=a_{j i}$. From this we shall form n equations, each one being obtained by setting x for x_{0} and one of the remaining variables equal to -1 and the rest equal to zero. The n equations are then

$$
x^{2}-a_{0 i} x+a_{i i}=0, \quad(i=1,2,3, \cdots, n)
$$

The conjugate roots of these equations we shall denote by r_{i} and $r_{i}^{\prime}(i=1,2, \cdots, n)$. We shall also assume that $r_{i}+r_{j}$ and $r_{i}^{\prime}+r_{j}^{\prime}$ are a pair of conjugate roots of the equation obtained from the equation

$$
Q\left(x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right)=0
$$

by putting $x_{i}=x_{j}=-1$, and all the remaining x_{k}, except x_{0}, equal to zero. We shall further assume that for any pair r_{i}, r_{j} all the conditions of the preceding sections are fulfilled so that $1, r_{i}, r_{j}, r_{i} r_{j}$ constitute the basal elements of an algebra such as we have already discussed. The product $r_{i} r_{j}$ we shall denote by $r_{i j}$.

All polynomials in $r_{1}, r_{2}, \cdots, r_{n}$ having coefficients in K constitute an algebra over K. In a later paper I expect to show some consequences of further restrictions on products involving three or more of the elements $r_{1}, r_{2}, \cdots, r_{n}$. For the present the algebra as defined is sufficient.
6. A Linear Set.* Having thus defined the algebra let us consider all elements of the form $x_{0}+x_{1} r_{1}+x_{2} r_{2}+\cdots+x_{n} r_{n}$. We shall write

$$
\begin{aligned}
\alpha & =u_{0}+u_{1} r_{1}+\cdots+u_{n} r_{n}, \\
\alpha^{\prime} & =u_{0}+u_{1} r_{1}^{\prime}+\cdots+u_{n} r_{n}^{\prime} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& S(\alpha)=\alpha+\alpha^{\prime}=2 u_{0}+a_{01} u_{1}+a_{02} u_{2}+\cdots+a_{0 n} u_{n} \\
& N(\alpha)=\alpha \alpha^{\prime}=u_{0}^{2}+\sum_{i=1}^{n} a_{i i} u_{i}^{2}+\sum_{i=1}^{n} a_{0 i} u_{0} u_{i} \\
& \\
& +\sum_{i<j}\left(r_{i} r_{j}^{\prime}+r_{j} r_{i}^{\prime}\right) u_{i} u_{j} .
\end{aligned}
$$

But according to our assumptions regarding the $r_{1}, r_{2}, \cdots, r_{n}$, by equations (18) and (9), we have

$$
r_{i} r_{j}^{\prime}+r_{j} r_{i}^{\prime}=S\left(r_{i}\right) S\left(r_{j}\right)-S\left(r_{i} r_{j}\right)=a_{i j} .
$$

We note that $a_{i j}$ has a different meaning here from what it had in the preceding section where $a_{12}=S\left(r_{1} r_{2}\right)$. Here $a_{i j}$ has taken the place of the c.

Hence we see that $S(\alpha)$ and $N(\alpha)$ are both numbers of K, and any element α of the linear set is a root of a quadratic equation with coefficients in K. We also note that

$$
N(\alpha)=Q\left(u_{0}, u_{1}, u_{2}, \cdots, u_{n}\right) .
$$

It is not difficult to show that $\alpha \alpha^{\prime}=\alpha^{\prime} \alpha$.

[^1]If α is some particular element of the linear set, the set also contains $m \alpha+n$ and hence with $u_{0}+u_{1} \gamma_{1}+\cdots+u_{n} r_{n}$ is also found in the set $u_{1} r_{1}+\cdots+u_{n} r_{n}$ and all its elements are obtained by the addition of a number of K to an element of the last form. But $u_{1} r_{1}+u_{2} r_{2}+\cdots+u_{n} r_{n}$ is a root of

$$
Q\left(x,-u_{1},-u_{2}, \cdots,-u_{n}\right)=0 .
$$

We therefore see that we may consider the linear set as the totality of all quadratic extensions to K formed by the adjunction of the roots of all equations obtained from the equation $Q\left(x, x_{1}, x_{2}, \cdots, x_{n}\right)=0$ by assigning to the x_{1}, x_{2}, \cdots, x_{n} all possible combinations of values from K.
7. Application to a Diophantine Equation. We shall next consider the equation

$$
\begin{equation*}
\sum_{i, j=0}^{n} a_{i j} x_{i} x_{j}=v_{1} v_{2} \cdots v_{k}, \quad\left(a_{i j}=a_{j i}\right) \tag{20}
\end{equation*}
$$

in which the coefficients $a_{i i}$ and $2 a_{i j}$ are rational integers. The application of the foregoing algebra will give a method for finding all rational, integral solutions of the equation. The unknowns are the $x_{0}, x_{1}, \cdots, x_{n}, v_{1}, v_{2}, \cdots, v_{k}$. The field K used in the preceding pages is, from now on, the field of rational numbers. If we multiply both members of (20) by a_{00} and put $a_{00} x_{0}=y_{0}$ we can write the left hand member of the equation as a quadratic form in $y_{0}, x_{1}, x_{2}, \cdots, x_{n}$. This form we shall denote by $Q\left(y_{0}, x_{1}, x_{2}, \cdots, x_{n}\right)$, and the equation (20) is equivalent to

$$
\begin{equation*}
Q\left(y_{0}, x_{1}, x_{2}, \cdots, x_{n}\right)=a_{00} v_{1} v_{2} \cdots v_{k} \tag{21}
\end{equation*}
$$

The quadratic form $Q\left(y_{0}, x_{1}, \cdots, x_{n}\right)$ has rational integral coefficients with that of $y_{0}{ }^{2}$ equal to 1 and hence is of the form considered in the preceding sections. The left hand member of (21) is therefore the norm of the general element of a linear set in an algebra such as has been defined above. It is therefore possible to write the equation (20) in a new form

$$
\begin{equation*}
N\left(a_{00} x_{0}+r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}\right)=a_{00} v_{1} v_{2} \cdots v_{k} \tag{22}
\end{equation*}
$$

For each set of rational values of $x_{1}, x_{2}, \cdots, x_{n}$ a root $\theta(x)$ of the equation

$$
\begin{equation*}
Q\left(x, x_{1}, x_{2}, \cdots, x_{n}\right)=0 \tag{23}
\end{equation*}
$$

is a generator of a quadratic extension of K. This may be either of the first or second kind.

Let us consider first the case when (23) is irreducible so that the quadratic extension is of the first kind. Then θ generates a quadratic number field and $1, \theta$ is a base of a ring in this field and $\left(a_{00}, \theta\right)$ is the base of an ideal in the ring. The problem of obtaining the solutions of

$$
\begin{equation*}
N\left(a_{00} x_{0}+\theta t\right)=a_{00} v_{1} v_{2} \cdots v_{k} \tag{24}
\end{equation*}
$$

has been solved by the author,* and from this we see that for those rational integral values of $x_{1}, x_{2}, \cdots, x_{n}$ which cause (23) to be irreducible we can obtain the solutions of (22) by writing it in the form
(25) $N\left(a_{00} x_{0}+r_{1} x_{1} t+r_{2} x_{2} t+\cdots+r_{n} x_{n} t\right)=a_{00} v_{1} v_{2} \cdots v_{k}$
and assigning values to $x_{1}, x_{2}, \cdots, x_{n}$ and solving for x_{0} and t by the method for solving (24).

In the case when the values $x_{1}, x_{2}, \cdots, x_{n}$ cause (23) to be reducible the left-hand member of (25) is the product of two linear factors which are homogeneous in x_{0} and t. Then elementary methods suffice for the determination of x_{0} and t, and the v_{i}.

It is easily seen that in assigning the values to $x_{1}, x_{2}, \cdots, x_{n}$ only such as are relatively prime need be used as all others will be included among the ones so found.

Hence to obtain all solutions of (20) replace $x_{1}, x_{2}, \cdots, x_{n}$ by $x_{1} t, x_{2} t, \cdots, x_{n} t$; assign to $x_{1}, x_{2}, \cdots, x_{n}$ arbitrary rational integral values thus reducing the left hand member of (20) to a binary form and hence solve by means of known methods.

University of Missouri

[^2]
[^0]: * Presented to the Society, April 10, 1925.
 \dagger Algebras and their Arithmetics, University of Chicago Press.
 \ddagger American Journal, vol. 1, p. 350.
 § Comptes Rendus, vol. 91. pp. 619-660.
 Bulletin de la Société de France, (2), vol. 11, p. 115.

[^1]: * Dickson, loc. cit.

[^2]: * This Bulletin, vol. 31, p. 430.

