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FUNCTIONS EXPANSIBLE IN SERIES* 

BY L. E. WARD 

In the Transactions of this Societyf Hopkins has stated and 
proved the following theorem. 

THEOREM I. If'fix) is a function analytic in the interior and 
on the boundary of a circle centered at x = 0 and of radius Xo, 
0<#o<7T, which involves in its power series expansion only 
powers of x of indices congruent to 2 (mod 3), and which has a 
continuous second derivative for real values of x in the interval 
0^x^7T, then the f or mat development of f(x) in a series whose 
terms are the characteristic functions of the differential system 

d^u 
1- p3u = o, «(0) = «'(0) = U(T) = 0, 

dxz 

converges uniformly to f(x) in the interval 0^x^x0. 

Hopkins proved further that the development converges 
uniformly to f(x) in the interior of an equilateral triangle cen­
tered at x = 0 and having one vertex at x — x0. The following 
theorem in which the adjoint differential system appears is 
obtained from Theorem I by the change of variable xf — ir — x. 

THEOREM II . If f{x) is a function analytic in the interior and 
on the boundary of a circle centered at X = TT and of radius xi, 
0<XI<T, which involves in its power series expansion only 
powers of iw—x) of indices congruent to 2 (mod 3), and which 
has a continuous second derivative for real values of x in the 
interval 0 g x ^ 7 r , then the formal development of f(x) in a series 

* Presented to the Society, April 2,1926. 
t J. W. Hopkins, Transactions of this Society, 1919, pp. 245, et seq. 
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whose terms are the characteristic functions of the differential 
system 

ph = 0, v(w) = vf(ir) = v(fi) = 0, 
dxz 

converges uniformly to f(x) in the interval Xi^x^ir. 

It can be shown further that the latter development con­
verges uniformly to f(x) in the interior of an equilateral triangle 
centered at X = TT and having one vertex at x = xi. 

The purpose of this note is to determine whether there are 
functions satisfying the conditions of both the above theorems ; 
and if there are, to see whether the corresponding series may 
have a common range of convergence. 

We derive first conditions which must be satisfied by a func­
tion f{x) of the type demanded by both theorems. We must 
have f(x) —x24>(xs) and f(x) — (T — X)2$[(T — X)3], where $(x3) 
and 4>[(x — x)3] are analytic in x3 at x = 0 and in (x — x)3 at 
x = 7r respectively. Such a function ƒ(x) must be the derivative 
with respect to x of a function i^i(x3) and also of ^[(TT — X)3]. 
Neglecting a constant of integration, which may be included 
in either function, we must have ^i(x3) =^2 [Or — x)3]. Can we 
find a function single valued and analytic in x3 at x = 0 and also 
single valued and analytic in (T — X)3 at x = w? If there is such 
a function, it will be invariant under the transformations 
x' = cox and x —x/ = co(7r —x), where œ = e2iriS; i. e., under the 
transformations 

( x' = o)X I ƒ x' — œx \ 

I x' — o)X + (1 — O))T) { x' — x + (1 — O))T j 

Repetition of the first of these gives x' ==o)mx, and of the second 
x' = x+n(l — œ)ir. Combination of these yields x' = oomx 
+n(l—œ)w. Repetition of this gives 

x' = œm+p'x + [q'<am — q'o)m+l + n — nœjir, 
or simply 

x' = C0nX + (^ + #w)7T. 

(Of course, w, n, p', q', p and q are integers.) 
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Consequently, x being an arbitrary point, the function must 
have the same value at the points 

x + (p + qo))ir, cox + (p + qo))ir, œ2x + (p + qo))ir 

that it has at x. A function having the same value at the points 
x+(p+qoS)ir as at x is a doubly periodic function of primitive 
periods ir and co7r; call g(x) such a function. Then ip{x) = g(x) 
+g(œx)-\r g(œ2x) is a doubly periodic function of periods w and 
cox, and it is invariant under all of the above transformations. 
Hence \p(x) is a single valued function of x3 and also of (7r —x)3, 
and \p'(x) can be expanded in both series. 

The question of whether or not these series have a common 
region of convergence depends for its answer on the location 
of the poles of yf/(x). It is clear that the poles may be situated 
so that the two triangles of convergence* have no common 
region in their interiors. On the other hand, it is not hard to 
put down the poles of g(x) so that the triangles will have a 
region interior to both, as the following example shows. 

Let g{x) have a double pole (of course with zero residue) at 
the point x = T/2+7ri/2(S)1/2, and no other singularity in the 
parallelogram three of whose vertices are at 0, T, COT. Then 
g(oox) and g(o)2x) will also have double poles at this point and 
nowhere else in this parallelogram. Hence \f/(x) will have double 
poles at the points x = w/2+7ri/2(3)ll2+pw+qü)T and nowhere 
else, and the same is true of xp ' (x). No singularity of \p ' (x) is nearer 
the origin than the pole at x = ir/2-\-iri/2(3)1/2, and hence 
the circle of Theorem I may be given a radius slightly smaller 
than 7r/31/2 but greater than w/2. The circle of Theorem II 
may be given the same radius. Then these circles will have a 
region interior to both of them, which will contain a portion 
of the axis of reals, along which the series mentioned in both 
theorems will converge uniformly to yp'{x). 

UNIVERSITY OF IOWA 

* Hopkins showed in his special case that the region of uniform con­
vergence is the interior of an equilateral triangle centered a t x = 0 and hav­
ing one vertex on the positive axis of reals. 


