FUNCTIONS EXPANSIBLE IN SERIES*

BY L. E. WARD

In the Transactions of this Society† Hopkins has stated and proved the following theorem.

THEOREM I. If f(x) is a function analytic in the interior and on the boundary of a circle centered at x=0 and of radius x_0 , $0 < x_0 < \pi$, which involves in its power series expansion only powers of x of indices congruent to 2 (mod 3), and which has a continuous second derivative for real values of x in the interval $0 \le x \le \pi$, then the formal development of f(x) in a series whose terms are the characteristic functions of the differential system

$$\frac{d^3u}{dx^3} + \rho^3u = 0, \qquad u(0) = u'(0) = u(\pi) = 0,$$

converges uniformly to f(x) in the interval $0 \le x \le x_0$.

Hopkins proved further that the development converges uniformly to f(x) in the interior of an equilateral triangle centered at x=0 and having one vertex at $x=x_0$. The following theorem in which the adjoint differential system appears is obtained from Theorem I by the change of variable $x'=\pi-x$.

THEOREM II. If f(x) is a function analytic in the interior and on the boundary of a circle centered at $x = \pi$ and of radius x_1 , $0 < x_1 < \pi$, which involves in its power series expansion only powers of $(\pi - x)$ of indices congruent to 2 (mod 3), and which has a continuous second derivative for real values of x in the interval $0 \le x \le \pi$, then the formal development of f(x) in a series

^{*} Presented to the Society, April 2, 1926.

[†] J. W. Hopkins, Transactions of this Society, 1919, pp. 245, et seq. Published by D. Jackson.

whose terms are the characteristic functions of the differential system

$$\frac{d^3v}{dx^3} - \rho^3v = 0, v(\pi) = v'(\pi) = v(0) = 0,$$

converges uniformly to f(x) in the interval $x_1 \leq x \leq \pi$.

It can be shown further that the latter development converges uniformly to f(x) in the interior of an equilateral triangle centered at $x = \pi$ and having one vertex at $x = x_1$.

The purpose of this note is to determine whether there are functions satisfying the conditions of both the above theorems; and if there are, to see whether the corresponding series may have a common range of convergence.

We derive first conditions which must be satisfied by a function f(x) of the type demanded by both theorems. We must have $f(x) = x^2\phi(x^3)$ and $f(x) = (\pi - x)^2\Phi[(\pi - x)^3]$, where $\phi(x^3)$ and $\Phi[(\pi - x)^3]$ are analytic in x^3 at x = 0 and in $(\pi - x)^3$ at $x = \pi$ respectively. Such a function f(x) must be the derivative with respect to x of a function $\psi_1(x^3)$ and also of $\psi_2[(\pi - x)^3]$. Neglecting a constant of integration, which may be included in either function, we must have $\psi_1(x^3) = \psi_2[(\pi - x)^3]$. Can we find a function single valued and analytic in x^3 at x = 0 and also single valued and analytic in $(\pi - x)^3$ at $x = \pi$? If there is such a function, it will be invariant under the transformations $x' = \omega x$ and $\pi - x' = \omega(\pi - x)$, where $\omega = e^{2\pi i \cdot 3}$; i. e., under the transformations

$$\left\{ \begin{array}{l} x' = \omega x \\ x' = \omega x + (1 - \omega)\pi \end{array} \right\} \quad \text{or} \quad \left\{ \begin{array}{l} x' = \omega x \\ x' = x + (1 - \omega)\pi \end{array} \right\}.$$

Repetition of the first of these gives $x' = \omega^m x$, and of the second $x' = x + n(1 - \omega)\pi$. Combination of these yields $x' = \omega^m x + n(1 - \omega)\pi$. Repetition of this gives

$$x' = \omega^{m+p'}x + [q'\omega^m - q'\omega^{m+1} + n - n\omega]\pi,$$
 or simply
$$x' = \omega^n x + (p + q\omega)\pi.$$

(Of course, m, n, p', q', p and q are integers.)

Consequently, x being an arbitrary point, the function must have the same value at the points

$$x + (p + q\omega)\pi$$
, $\omega x + (p + q\omega)\pi$, $\omega^2 x + (p + q\omega)\pi$

that it has at x. A function having the same value at the points $x+(p+q\omega)\pi$ as at x is a doubly periodic function of primitive periods π and $\omega\pi$; call g(x) such a function. Then $\psi(x)=g(x)+g(\omega x)+g(\omega^2 x)$ is a doubly periodic function of periods π and $\omega\pi$, and it is invariant under all of the above transformations. Hence $\psi(x)$ is a single valued function of x^3 and also of $(\pi-x)^3$, and $\psi'(x)$ can be expanded in both series.

The question of whether or not these series have a common region of convergence depends for its answer on the location of the poles of $\psi(x)$. It is clear that the poles may be situated so that the two triangles of convergence* have no common region in their interiors. On the other hand, it is not hard to put down the poles of g(x) so that the triangles will have a region interior to both, as the following example shows.

Let g(x) have a double pole (of course with zero residue) at the point $x = \pi/2 + \pi i/2(3)^{1/2}$, and no other singularity in the parallelogram three of whose vertices are at $0, \pi, \omega\pi$. Then $g(\omega x)$ and $g(\omega^2 x)$ will also have double poles at this point and nowhere else in this parallelogram. Hence $\psi(x)$ will have double poles at the points $x = \pi/2 + \pi i/2(3)^{1/2} + p\pi + q\omega\pi$ and nowhere else, and the same is true of $\psi'(x)$. No singularity of $\psi'(x)$ is nearer the origin than the pole at $x = \pi/2 + \pi i/2(3)^{1/2}$, and hence the circle of Theorem I may be given a radius slightly smaller than $\pi/3^{1/2}$ but greater than $\pi/2$. The circle of Theorem II may be given the same radius. Then these circles will have a region interior to both of them, which will contain a portion of the axis of reals, along which the series mentioned in both theorems will converge uniformly to $\psi'(x)$.

University of Iowa

^{*} Hopkins showed in his special case that the region of uniform convergence is the interior of an equilateral triangle centered at x = 0 and having one vertex on the positive axis of reals.