A GENERALIZATION OF RECURRENTS

BY MORGAN WARD

1. Introduction. It is well known that if

$$\phi(x) = \sum_{r=0}^{\infty} \phi_r x^r, \qquad \psi(x) = \sum_{s=0}^{\infty} \psi_s x^s$$

are two singly infinite series, then the coefficients in the expansion of $\phi(x)/\psi(x)$, $\log \phi(x)$, $e^{\phi(x)}$ can all be expressed as determinants in the quantities ϕ_r , ψ_s . These expressions are called *recurrents* and have been used by several writers* to evaluate determinants involving the binomial coefficients, Bernoulli numbers, etc.

In the present paper, the analogous results are given for the quotient of two *doubly* infinite series, and the logarithm and exponential of a doubly infinite series. The extension to *m*-tuply infinite series is briefly sketched in \$8.

It is believed the expressions obtained are new; there is no reference to any such work in the four volumes of Muir's *History*. We assume throughout that all the series involved are absolutely convergent, so that the derangements and multiplications employed are justified. As a matter of fact, we are dealing essentially with infinite sets of quantities A_{rs} , B_{rs} , C_{rs} , \cdots , $(r, s, = 0, 1, 2, \cdots)$; the "variables" which appear in the series are merely convenient carriers for their coefficients.

We shall use, wherever convenient, the convention employed by writers on relativity for summations, namely,

$$U_{rs}x^ry^s$$
,

which is taken to mean

$$\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} U_{rs} x^r y^s,$$

the summations being understood.

^{*} Muir's History, vols. II, III, IV, Chapters on recurrents.

2. Degree and Rank. Given a doubly infinite series

(1)
$$U(x,y) = U_{rs}x^r y^s,$$

we shall invariably write U in the order

$$U_{00} + U_{10}x + U_{01}y + U_{20}x^2 + U_{11}xy + U_{02}y^2 + \cdots,$$

or as

(2)
$$U(x,y) = \sum_{l=0}^{\infty} \sum_{k=0}^{l} U_{l-k,k} x^{l-k} y^{k}.$$

We define

$$l = (l - k) + k$$
, $u_{lk} = \frac{l(l + 1) + 2(k + 1)}{2}$,

as the *degree* and *rank* respectively of the coefficient $U_{l-k,k}$. Hence the degree of a coefficient is the degree of the term it multiplies. The rank of a coefficient is simply its place in the series (2). For since from (2) there are l+1 terms of degree l, the coefficient U_{l0} appears in the [(1+2+3+ $\cdots +l)+1]$ st place, that is,

$$u_{l0} = \frac{l(l+1)}{2} + 1.$$

The coefficient $U_{l-k,k}$ is k terms to the right of U_{l0} , so that its rank is

$$\frac{l(l+1)}{2} + 1 + k = \frac{l(l+1) + 2(k+1)}{2} = u_{lk}.$$

Thus for U_{rs} , the degree is r+s, and the rank is

(3)
$$u_{rs} = \frac{(r+s)(r+s+1) + 2(s+1)}{2} \cdot$$

Moreover, it follows from the meaning of rank, that given any positive integer n, the equation

$$(4) n = u_{rs}$$

determines a unique pair of non-negative integers r, s, and hence a unique coefficient U_{rs} in the series (2). Let k be any integer not greater than r+s. Then, by (3),

$$u_{r+s-k,k} = \frac{(r+s)(r+s+1) + 2(k+1)}{2};$$

hence

$$u_{r+s-k,k}+s-k=\frac{(r+s)(r+s+1)+2(s+1)}{2}=u_{rs}.$$

In particular

$$(5) u_{r+s,0}+s=u_{rs}, s\leq r+s.$$

3. Coefficients for a Product. If

$$\begin{aligned} A(x, y) &= A_{qr} x^q y^r, \\ B(x, y) &= B_{st} x^s y^t, \end{aligned}$$

then we know that

$$A(x, y) \cdot B(x, y) = C_{uv} x^u y^v,$$

where

(6)
$$C_{uv} = \sum_{\sigma=0}^{u} \sum_{\tau=0}^{v} A_{u-\sigma,v-\tau}B_{\sigma\tau}.$$

4. Coefficients for a Quotient. Consider now

$$P(x, y) = P_{uv} x^u y^v,$$

$$Q(x, y) = Q_{qr} x^q y^r,$$

and let

(7)
$$\frac{P(x,y)}{Q(x,y)} = Z(x,y) = Z_{st}x^sy^t,$$

where the coefficients Z_{st} are to be determined.

First, we can assume $Q_{00} \neq 0$. For, if $Q_{00} = Q_{10} = Q_{01} = \cdots$ =0, $Q_{ij} \neq 0$, multiply both sides of (7) by $x^i y^j$, replacing $Q(x, y)/x^i y^j$ by Q'(x, y) and $x^i y^j Z(x, y)$ by Z'(x, y) with $Z_{00'} = Z_{10'} = Z_{01'} = \cdots = 0$, $Z_{ij'} = Z_{00}$. We then have a new equality of the same form as (7) with $Q'_{00} = Q_{ij} \neq 0$. Thus P(x, y) = Q(x, y)Z(x, y), or, by (6),

(8)
$$P_{uv} = \sum_{\sigma=0}^{u} \sum_{\tau=0}^{v} Q_{u-\sigma,v-\tau} Z_{\sigma\tau}, \qquad (u,v=0,1,2,\cdots).$$

It may be noted in passing, that just as recurrents are related to difference equations with constant coefficients, so may (7), if Q(x, y) be a polynomial, be looked upon as a linear partial difference equation with constant coefficients to determine Z_{uv} .

Let us introduce the symbol

$$(\lambda_{r-k,k}; u-r+k, v-k),$$

defined by the relations

(9)
$$\begin{cases} \lambda_{r-k,k} = \frac{r(r+1) + 2(k+1)}{2}, \\ (\lambda_{r-k,k} ; u - r + k, v - k) = 0, \text{ if } r > u + k, \text{ or } k > v, \\ = Q_{u-r+k,v-k}, \text{ if } k \leq v \text{ and } r \leq u + k. \end{cases}$$

Then (8) may be written

(10)
$$\sum_{r=0}^{u+v} \sum_{k=0}^{r} (z_{r-k,k}; u-r+k, v-k) Z_{r-k,k} = P_{uv},$$
$$(p_{uv} = 1, 2, 3, \cdots).$$

For $\lambda_{r-k,k} = z_{r-k,k}$, by definition of rank in (3). Moreover setting $r-k=\sigma$, $k=\tau$ in (10), we see that every term that occurs in (8) occurs in (10), and conversely.

Finally, by virtue of (9) we may replace (10) by

(11)
$$\sum_{r=0}^{n} \sum_{k=0}^{r} (z_{r-k,k}; u-r+k, v-k) Z_{r-k,k} = P_{uv},$$
$$(p_{uv} = 1, 2, 3, \cdots),$$

where *n* is any integer $\geq u+v$. Take $n=z_{ij}$ and consider the set of $n=p_{ij}$ equations (11), in the *n* unknowns Z_{00} , Z_{10} , Z_{01} , \cdots , Z_{ij} ,

Since $Q_{00} \neq 0$, we have, solving for Z_{ij} by determinants,

$$(13) \qquad (13) \qquad Q_{00}^{n} Z_{ij} = \begin{vmatrix} Q_{00} & 0 & 0 & \cdots & 0 & P_{00} \\ Q_{10} & Q_{00} & 0 & \cdots & 0 & P_{10} \\ Q_{01} & 0 & Q_{00} & \cdots & 0 & P_{01} \\ Q_{20} & Q_{10} & 0 & \cdots & 0 & P_{20} \\ Q_{11} & Q_{01} & Q_{10} & \cdots & 0 & P_{11} \\ Q_{02} & 0 & Q_{01} & \cdots & 0 & P_{02} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ Q_{ij}, (2; i-1, j+1), (3, i-2, j+2) \cdots & P_{ij} \end{vmatrix},$$

where (13) is constructed on the following scheme. The elements in the sth column (s < n) consist of s-1 zeros, then the coefficients of Q(x, y) of degree zero, one, two, three, \cdots , in their proper order, the groups of coefficients of the same degree being separated by r' zeros, where $s = z_{r'-k',k'}$ determines r'. In fact, we see from (11), that the elements in the sth column are given by the expression

(14)
$$(s; u - r' + k', v - k'),$$

where r' and k' are determined from the equation

$$z_{r'-k',k'}=s,$$

in accordance with (4), and (u, v) has the successive values

(15)
$$(0,0),(1,0),(0,1),(2,0),(1,1),\cdots,(u,v),\cdots,(i,j),$$

 $n = \lambda_{ij}$ in number, (u, v) appearing in the λ_{uv} th place in (15). Now the $\sigma + 1$ terms (uv) of constant degree $u + v = \sigma$, $(0 \le \sigma \le i + j)$, appear in the order

(16)
$$(\sigma,0), (\sigma-1,1), \cdots, (\sigma-k,k), \cdots, (0,\sigma).$$

If *n* is replaced *u* by $\sigma - v$, (14) becomes

$$(s; \sigma - r' + k' - v, v - k'),$$

1927.]

so that for $v = 0, 1, 2, \dots, \sigma$, we have the values of (14) for the sequence (16). But this expression vanishes, by (9), unless

(a)
$$v-k' \ge 0$$
,

 $\sigma - r' + k' - v \ge 0.$ (b)

Thus the first k' terms of (16) yield k' zeros. Replace v by r+k', where to satisfy (a) and (b) $0 \le r \le \sigma - r' \ge 0$. We thus obtain from the next $\sigma - r' + 1$ terms of (15).

$$(s; \sigma - r', 0), (s; \sigma - r' - 1, 1), \cdots, (s; 0, \sigma - r'),$$

by (9),

$$Q_{\sigma-r',0}, \quad Q_{\sigma-r'-1,1}, \cdots, \quad Q_{0,\sigma-r'}$$

the coefficients of Q(x, y) of degree $\sigma - r'$ in their proper The remaining terms of (16) produce $\sigma + 1 - k'$ order. $-(\sigma - r' + 1) = r' - k'$ zeros.

Since the sequence of degree $\sigma + 1$ following (16) produces k' zeros followed by

$$Q_{\sigma+1-r',0}, \quad Q_{\sigma-r',1}, \cdots, \quad Q_{0,\sigma+1-r'},$$

we see that the coefficients of degree $\sigma - r' = 0, 1, 2, 3, \cdots$ are separated by r' zeros, as stated. Q_{00} appears when $\sigma - r' = 0$. From (a) and (b).

$$v = k', \quad u = \sigma - v = r' - k'.$$

Hence Q_{00} appears in the $\lambda_{r'-k',k'}$ or the sth place in the column; i. e., in (13), the elements Q_{00} lie along the main diagonal. The last column in (13) consists of the elements P_{00} , P_{10} , P_{01} , \cdots , P_{ij} in order of rank.

5. Final Coefficients in the sth Column. There is some doubt about the last few elements in the sth column, but this is obviated as follows. Take $s = z_{i+j-\tau,\tau}$, $(0 \le \tau \le j-1)$, i. e., consider the (n-j)th, (n-j-1)th, \cdots , (n-1)th columns of (13).

We have then $s = n - j + \tau$ so that the *s*th column contains $n-i+\tau$ zeros, Q_{00} , followed by i+i zeros by our results in §4. But since there are only n elements in the column, Q_{00} is followed by $j-\tau-1$ zeros, since $j-\tau-1$ is always

less than i+j. Hence we can reduce (13) to a determinant of the (n-j)th order multiplied by Q_{00}^{j} to some power, for the *j* columns just considered consist entirely of zeros save along the main diagonal where Q_{00} appears.

Now $n = z_{ij}$ and $z_{i+j,0} + j = n$, by (5). Hence, setting $n - j = \nu$, we have

$$n-j = z_{i+j,0} = \frac{(i+j)(i+j+1)}{2} + 1 = \nu.$$

The elements in the ν th row are now

$$Q_{ij}, (2; i-1, j+1), (3; i-2, j+2), \cdots,$$

(\nu-1; i-\nu+2, j+\nu-2), P_{ij}

so that the sth column terminates with

$$(s; i - s + 1, j + s - 1)$$

and in the $(\nu - 1)$ th row the elements are

$$(z_{r-k,k}; k-r, i+j-1-k) = \delta_{r+1,k+i}Q_{0,i+j-1-r},$$

 $(r,k=0,1,2,\cdots,i+j-1),$

where δ_{uv} is the Kronecker symbol.

Thus we have

$$Q_{0,i+j-1}, 0, Q_{0,i+j-2}, 0, 0, Q_{0,i+j-3}, 0, 0, 0, \cdots, Q_{00}, P_{0,i+j-1},$$

so that our evaluation of Z_{ij} gives us

	Q00	0		P_{00}
	Q10	Q_{00}	•••	P_{01}
(17) $Q_{00}^{\nu} Z_{ij} =$	Q01	0	•••	<i>P</i> ₁₀
	Q20	Q_{10}	•••	P ₂₀
	Q ₁₁ Q ₀₂	Q_{01}	• • •	P ₁₁
	Q_{02}	0		P_{02} ,
	•	•		
	•	•	• • •	
	$\dot{Q}_{1,i+j-2}$	•	• • •	•
	$Q_{0,i+j-1}$	0	•••	
	Q_{ij} (2; <i>i</i> –	1, j + 1),		Pij

[July-August,

where

$$\nu = \frac{(i+j)(i+j+1)}{2} + 1.$$

6. Expression of the Z's as Recurrents. There remains still one more simplification; the quantities $Z_{i+i,0}$, $Z_{0,i+i}$ can be expressed as recurrents. For we obtain from (7), §4, by the ordinary multiplication rule

(18)
$$P_{uv} = \sum_{t=0}^{u} \sum_{s=0}^{v} Q_{ts} Z_{u-t,v-s}, (u,v=0,1,2,3,\cdots).$$

This result may be written

(19)
$$P_{uv} - R_{uv} = \sum_{t=0}^{u} Q_{t0} Z_{u-t,v}, \quad (u = 0, 1, 2, 3, \cdots),$$

where

(20)
$$R_{uv} = \sum_{t=0}^{u} \sum_{s=1}^{v} Q_{ts} Z_{u-t,v-s},$$

so that

$$R_{u0} = 0,$$

$$R_{u1} = \sum_{t=0}^{u} Q_{t1} Z_{u-t,0},$$

$$R_{u2} = \sum_{t=0}^{u} Q_{t1} Z_{u-t,1} + \sum_{t=0}^{u} Q_{t2} Z_{u-t,0},$$
etc.

The formula (19) gives for $u=0, 1, 2, 3, \cdots, i+j$, the set of i+j+1 equations

$$\begin{array}{rcl} Q_{00} & Z_{0v} & = P_{0v} - R_{0v}, \\ Q_{10} & Z_{0v} + Q_{00} & Z_{1v} & = P_{1v} - R_{1v}, \\ Q_{20} & Z_{0v} + Q_{10} & Z_{1v} & + Q_{00} & Z_{2v} & = P_{2v} - R_{2v}, \\ \vdots & \vdots & \vdots & \vdots \\ Q_{i+j,0} & Z_{0v} + Q_{i+j-1,0} & Z_{1v} + Q_{i+j-2,0} & Z_{2v} + \cdots \\ & & & + Q_{00} & Z_{i+j,v} & = P_{i+j,v} & -R_{i+j,v}, \end{array}$$

so that

(21)

$$Q_{00}^{i+j+1}Z_{i+j,v} = \begin{vmatrix} Q_{00} & 0 & \cdots & P_{0v} - R_{0v} \\ Q_{10} & Q_{00} & \cdots & P_{1v} - R_{1v} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ Q_{i+j,0} & \cdots & P_{i+j,v} - R_{i+j,v} \end{vmatrix}$$

In particular

$$(22) \quad Q_{00}^{i+j+1}Z_{i+j,0} = \begin{vmatrix} Q_{00} & 0 & \cdots & P_{00} \\ Q_{10} & Q_{00} & \cdots & P_{10} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ Q_{i+j,0} & \cdots & P_{i+j,0} \end{vmatrix}$$

which gives the required expression for $Z_{i+i,0}$ as a recurrent. From symmetry the expression for $Z_{0,i+i}$ is derived from (22) by simply interchanging the subscripts of all the terms in (21).

We may observe that, having obtained the quantities Z_{u0} by (22), we know R_{u1} , so that we can calculate the quantities $Z_{i+j-1,1}$ by means of (21). Proceeding thus step by step, we can finally calculate Z_{ij} .

There are a number of relations among the determinants (17), (22). For example, suppose we interchange x and y in the equation (7),

$$\frac{P(x,y)}{Q(x,y)} = Z(x,y).$$

The effect is merely to interchange the subscripts of the coefficients throughout. Hence in (17), we can interchange the subscripts of Z_{ij} , the Q's and the P's and obtain an expression for Z_{ji} , ν , the order of the determinant, being unaffected by the process. Again, we may write (7) as

$$\frac{P(x,y)}{Z(x,y)} = Q(x,y),$$

so that we can interchange the roles of the Q's and Z's in (17).

[July-August,

7. Final Expressions for the Z's. The first eleven coefficients in the development of

$$\frac{P(x,y)}{Q(x,y)} = Z_{00} + Z_{10}x + Z_{01}y + \cdots + Z_{03}y^3 + \cdots$$

are

$$\begin{split} Z_{00} &= Q_{00}^{-1} P_{00}, \\ Z_{10} &= Q_{00}^{-2} \begin{vmatrix} Q_{00} & P_{00} \\ Q_{10} & P_{10} \end{vmatrix}, \qquad Z_{10} &= Q_{00}^{-2} \begin{vmatrix} Q_{00} & P_{00} \\ Q_{01} & P_{01} \end{vmatrix}, \\ Z_{20} &= Q_{00}^{-3} \begin{vmatrix} Q_{00} & 0 & P_{00} \\ Q_{10} & Q_{00} & P_{10} \\ Q_{20} & Q_{10} & P_{20} \end{vmatrix}, \qquad Z_{02} &= Q_{00}^{-3} \begin{vmatrix} Q_{00} & 0 & P_{00} \\ Q_{01} & Q_{00} & P_{01} \\ Q_{02} & Q_{01} & P_{02} \end{vmatrix}, \\ Z_{11} &= Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{10} & Q_{00} & 0 & P_{10} \\ Q_{10} & Q_{00} & P_{01} \\ Q_{11} & Q_{10} & P_{11} \end{vmatrix}, \\ &= Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{01} & Q_{00} & 0 & P_{10} \\ Q_{10} & Q_{00} & 0 & P_{10} \\ Q_{10} & Q_{00} & 0 & P_{10} \\ Q_{10} & Q_{00} & 0 & P_{10} \\ Q_{20} & Q_{10} & Q_{00} & P_{20} \\ Q_{20} & Q_{10} & Q_{00} & P_{20} \end{vmatrix}, \\ Z_{30} &= Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{00} & Q_{00} & 0 & P_{00} \\ Q_{20} & Q_{10} & Q_{00} & P_{20} \\ Q_{30} & Q_{20} & Q_{10} & P_{30} \end{vmatrix}, \\ &Z_{03} &= Q_{00}^{-4} \begin{vmatrix} Q_{00} & 0 & 0 & P_{00} \\ Q_{01} & Q_{00} & 0 & P_{00} \\ Q_{01} & Q_{00} & 0 & P_{00} \\ Q_{01} & Q_{00} & 0 & P_{01} \\ Q_{02} & Q_{01} & Q_{00} & P_{02} \\ Q_{03} & Q_{02} & Q_{01} & P_{03} \end{vmatrix}, \end{split}$$

$$Z_{21} = Q_{00}^{-7} \begin{vmatrix} Q_{00} & 0 & 0 & 0 & 0 & 0 & P_{00} \\ Q_{10} & Q_{00} & 0 & 0 & 0 & 0 & P_{10} \\ Q_{01} & 0 & Q_{00} & 0 & 0 & 0 & P_{01} \\ Q_{20} & Q_{10} & 0 & Q_{00} & 0 & 0 & P_{20} \\ Q_{11} & Q_{01} & Q_{10} & 0 & Q_{00} & 0 & P_{11} \\ Q_{02} & 0 & Q_{01} & 0 & 0 & Q_{00} & P_{02} \\ Q_{21} & Q_{11} & Q_{20} & Q_{01} & Q_{10} & 0 & P_{21} \end{vmatrix}$$

$$Z_{12} = Q_{00}^{-7} \begin{vmatrix} Q_{00} & 0 & 0 & 0 & 0 & 0 \\ Q_{00} & Q_{00} & 0 & 0 & 0 & 0 \\ Q_{01} & Q_{00} & 0 & 0 & 0 & 0 & P_{10} \\ Q_{10} & 0 & Q_{00} & 0 & 0 & 0 & P_{10} \\ Q_{02} & Q_{01} & 0 & Q_{00} & 0 & 0 & P_{11} \\ Q_{10} & 0 & Q_{00} & 0 & 0 & 0 & P_{11} \\ Q_{10} & 0 & Q_{00} & 0 & 0 & 0 & P_{12} \\ Q_{11} & Q_{10} & Q_{10} & 0 & Q_{00} & 0 & P_{12} \\ Q_{12} & Q_{11} & Q_{02} & Q_{10} & Q_{01} & 0 & P_{12} \end{vmatrix}$$

8. Quotient of two m-tuply Infinite Series. The same method can be applied to the development of the quotient of two triply, or indeed of two m-tuply infinite series. We need only to generalize the formulas for degree and rank of §2, for product of two series in §3 and to introduce a symbol corresponding to the $(\lambda_{r-k,k}; u-r+k, v-k)$ of §4 to obtain the analog of (17); the analog of (21) is obtained with equal ease. Thus for the m-tuply infinite series,

$$A(x_1, \cdots, x_m) = A_{i_1i_2} \cdots A_{i_m} x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m},$$

 $i_1+i_2+\cdots+i_m$ is the *degree* of the coefficient A_i above and

(23)
$$a_{i_1i_2\cdots i_m} = \sum_{r=1}^m {i_r + i_{r+1} + \cdots + i_m + m - r \choose m - r + 1} + 1$$

is its rank, when A is written so that the terms of degree 0, 1, 2, \cdots , r, r+1, \cdots succeed each other in order, and the terms of degree r are arranged in alphabetic order.

1927.]

[July-August,

For the product of two such series, we have the formula

$$A(x_1, \cdots, x_m) \cdot B(x_1, \cdots, x_m) = C(x_1, \cdots, x_m),$$

where

(24)
$$C_{j_1,\ldots,j_m} = \sum_{r=0}^{j} A_{j_1-r_1,j_2-r_2,\ldots,j_m-r_m} B_{r_1,r_2,\ldots,r_m}$$

If we define $Z(x_1, \cdots, x_m)$ by

(25)
$$\frac{P(x_1,\cdots,x_m)}{Q(x_1,\cdots,x_m)}=Z(x_1,\cdots,x_m),$$

then our new symbol is

$$\Delta_{sj} = (\lambda_{sj}; j_1 - s_1 + s_2, j_2 - s_2 + s_3, \cdots, j_{m-1} - s_{m-1} + s_m, j_m - s_m),$$

defined by $\Delta_{sj}=0$ if $j_r-s_r+s_{r+1}$ is negative for any r between 0 and m+1, and

(26)
$$\Delta_{sj} = Q_{j_1-s_1+s_2}, \dots, j_{m-s_m},$$

if $j_r - s_r + s_{r+1}$ is positive for every r between 0 and m+1, and by convention $s_{m+1}=0$. But our final results in the general case are completely obscured by the symbolism introduced to express them.

9. Expansion of a Logarithm. We can readily obtain the expansion of

(27)
$$\log Q(x,y) = Z(x,y)$$

where

$$Q(x, y) = Q_{qr} x^q y^r, \qquad Q_{00} \neq 0,$$

$$Z(x, y) = Z_{st} x^s y^t.$$

For, operating on (27) with

$$x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y},$$

we obtain a result of the form

$$\frac{P(x,y)}{Q(x,y)} = W(x,y),$$

where

$$W_{st} = (s+t)Z_{st}, \qquad P_{uv} = (u+v)Q_{uv},$$

by Euler's theorem on homogeneous functions and our convention as to the order of an infinite series.

Thus $Z_{00} = \log Q_{00}$; the other coefficients are derived from our previous expressions by replacing Z_{ij} by $Z_{ij}/(i+j)$ and P_{uv} by $(u+v)Q_{uv}$.

10. Expansion of an Exponential. For $e^{Q(x,y)}$, a slightly different procedure is necessary. Let

(28)
$$\begin{cases} e^{Q(x,y)} = W(x,y), \\ \theta = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}. \end{cases}$$

We shall have

(29)
$$\begin{cases} Q(x,y) = Q_{qr}x^q y^r, \quad \theta Q = (q+r)Q_{qr}x^q y^r, \\ W(x,y) = W_{\epsilon t}x^s y^t, \quad \theta W = (s+t)W_{\epsilon t}x^s y^t. \end{cases}$$

Then

(30)
$$\theta e^{Q} = \theta Q e^{Q} = (\theta Q) \cdot W = \theta W.$$

Hence, by (6),

(31)
$$(u + v)W_{uv} = \sum_{\sigma=0}^{u} \sum_{\tau=0}^{v} (u + v - \sigma - \tau)Q_{u-\sigma,v-\tau}W_{\sigma\tau}.$$

Now as in §4 introduce a symbol

 $(\lambda_{r-k,k}; u-r+k, v-k)$

defined as in (9), with one modification, namely, while

$$\lambda_{r-k,k} = \frac{r(r+1) + 2(k+1)}{2}$$

and

$$(\lambda_{r-k,k} ; u - r + k, v - k) = 0, \text{ if } r > u + k, \text{ or } k > v,$$
$$= (u + v - r)Q_{u-r+k,v-k},$$
$$\text{ if } k \leq v \text{ and } r \leq u + k,$$

we have

$$(\lambda_{r-k,k}; u-r+k, v-k) = -(u+v),$$

for k = v and r = u + v. Then (31) may be written in the form

(32)
$$\sum_{r=0}^{u+v} \sum_{k=0}^{r} (W_{r-k,k}; u-r+k, v-k) W_{r-k,k} = 0,$$

just as (10) was equivalent to (8) in §4. Also $(\lambda_{00}; 0, 0) = 0$, but from (28) we see that

$$e^{Q_{00}} = W_{00} = -P_{00}$$
, say.

Thus (28) becomes equivalent to (10) if we replace in each equation P_{uv} by 0 for u+v>0 and $(\lambda_{uv}; 0, 0)$ by -(u+v), instead of by Q_{00} . We thus obtain the following set of w_{ij} equations for W_{ij} :

$$- W_{00} = P_{00},$$

$$1 \cdot Q_{10}W_{00} - 1 \cdot W_{10} = 0,$$

$$1 \cdot Q_{01}W_{00} + 0 \cdot W_{10} - 1 \cdot W_{01} = 0,$$

$$2 \cdot Q_{20}W_{00} + 1 \cdot Q_{10}W_{10} + 0 \cdot W_{01} - 2W_{20} = 0,$$

$$2 \cdot Q_{11}W_{00} + 1 \cdot Q_{01}W_{10} + 1 \cdot Q_{10}W_{01} + 0 \cdot W_{20} - 2W_{11} = 0,$$

$$2 \cdot Q_{02}W_{00} + 0 \cdot W_{10} + 1 \cdot Q_{01}W_{01} + 0 \cdot W_{20}$$

$$+ 0 \cdot W_{11} - 2W_{02} = 0,$$

$$(i + j)Q_{ij}W_{00} + \cdots$$

$$- (i + j)W_{ij} = 0.$$

The determinant of this system is

$$(-1)(-1)^{2}(-2)^{3}(-3)^{4}\cdots$$

 $(-i-j+1)^{i+j}(-i-j)$
 $= (-1)^{w_{ij}} 1^{2} \cdot 2^{3} \cdot 3^{4} \cdots (i+j-1)^{i+j}(i+j)^{j}.$

Just as before, if we solve for W_{ij} , we can reduce the determinant we obtain corresponding to (12) to one of the ν th order,

$$\nu = \frac{(i+j)(i+j+1)}{2} + 1.$$

But we can also develop this expression with respect to its last row which is P_{00} , 0, 0, \cdots , 0, obtaining a determinant of the $(\nu-1)$ st order with a factor $(-1)^{\nu-1}$. Hence our final form for W_{ij} is

As before, we can interchange subscripts of all the Q's to obtain W_{ii} . We can also express $W_{i+i,0}$ and $W_{0,i+i}$ as recurrents; thus

$$(i+j-1)!W_{i+j,0} = - \begin{vmatrix} Q_{10} & -1 & 0 \\ 2Q_{20} & Q_{10} & -2 & 0 \\ 3Q_{30} & 2Q_{20} & Q_{10} & -3 & 0 \\ \vdots & & & \vdots \\ & & & -(i+j) \\ (i+j)Q_{i+j,0} \cdots & Q_{10} \end{vmatrix}$$

with a similar expression for $W_{0,i+j}$.

11. Conclusion. It hardly seems necessary to give numerical examples of these expansions. As in the case of recurrents, from expressions of such generality any desired example may be derived by a mere substitution of numbers for letters in the general formulas. The quotient of two polynomials, the reciprocal of a series or a polynomial, for example, are included as special cases.

It appears from the expressions for Z_{21} and Z_{12} in §7, that a further immediate reduction of the order of the determinants (17) is sometimes possible; but to explicate this reduction in the general case would be to mar the simplicity and symmetry of our developments.

In conclusion I should like to thank Professor E. T. Bell for criticism and suggestions in the writing of this paper.

CALIFORNIA INSTITUTE OF TECHNOLOGY

A CORRECTION

In the paper by H. W. March, *The Heaviside operational calculus*, this Bulletin, vol. 33(1927), on page 312, in the line following equation (2), change "negative" to "positive."