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SEPARATION T H E O R E M S AND T H E I R RELATION 
TO R E C E N T DEVELOPMENTS IN 

ANALYSIS SITUS* 

BY J. R. KLINE 

1. Introduction. The study of those properties of point sets 
which are invariant under (1-1) continuous transformations 
form the subject matter of analysis situs. I t is the purpose of 
the present paper to discuss one of the fundamental invar­
iants of this field, that of a point set being separated by 
various of its subsets. 

A set is said to be connected in the weak sense, if it is im­
possible to express it as the sum of two mutually separated 
sets, that is, two sets that are mutually exclusive and neither 
of which contains a limit point of the other one. A set M 
is said to be connected in the strong sense if, for every two 
points P and Q of M, there is in M a closed and connected 
subset containing both P and Q. If to the set K, consisting 
of ;y = sin (1/x), [ 0 < # ^ l / 7 r ] , we add the origin, we obtain 
a set which is connected in the weak sense but not in the 
strong sense. A set 5 is disconnected in the weak sense by one 
of its subsets T> in case S—T is not connected in the strong 
sense; it is disconnected in the strong sense in case 5— T is not 
connected even in the weak sense. Thus every set T which 
disconnects S in the strong sense also disconnects it in the 
weak sense but the converse is not true. Thus the set K', 
composed of the above set K together with the y-axis between 
(0, + 1 ) and (0, — 1) is disconnected in the weak sense by the 
removal of the origin but is not so disconnected in the 
strong sense. I t is interesting to note that according to a 
theorem of R. L. Wilder, (1) if one limits himself to separat­
ing sets T which are closed, then if 5 is a continuous curve, T 
disconnects 5 in the weak sense only if it disconnects it in 

* An address delivered at the meeting of this Society on May 7, 1927, 
in New York City, by invitation of the Program Committee. 
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the strong sense; and (2) continuous curves are the only 
continua* for which the two types of separation by closed 
sets are equivalent.! 

The theorems of analysis situs are divided roughly into 
those that are concerned with continuity considerations 
and those of a combinatorial character. In the present paper 
we shall a t tempt to correlate the numerous important and 
rather widely scattered results that have been obtained in the 
field which deals with continuity considerations. The theory 
has been developed most extensively in two dimensions. 
However, while our material is arranged according as the 
separating sets and the sets separated are two-dimensional 
continua óf various types, we shall always point out the 
analogous results in three or more dimensions and at tempt 
to point out some of the difficulties in the cases where the 
extensions have not been made. 

2. S is a Euclidean Plane and T is a Continuous Curve,% 
A notable step in the development of modern mathematics 
was made by Jordan when he expressed the necessity for a 
proof of the statement tha t every plane simple closed 
curve § divides its plane into an inside and an outside region 

* A set which is both closed and connected will be called a continuum. 
t See R. L. Wilder, Concerning continuous curves, Fundamenta Mathe-

maticae, vol. 7 (1925), Theorem 8, p, 373. This paper will hereafter be 
referred to as W. F . 

{ A continuous curve is the set of points whose coordinates can be repre­
sented as x=f(t) and y—g{t), where fit) and g(t) are continuous, single 
valued functions of t, 0 ^ t^ 1. A very useful point set characterization of a 
continuous curve was given by Hahn, when he proved tha t a necessary and 
sufficient condition t ha t a closed and connected point set be a continuous 
curve is t ha t it be connected im kleinen a t all its points. A set of points is 
said to be connected im kleinen at a point P if, whenever C is a circle having 
P as center, there exists a concentric circle C such t ha t if Q is a point of the 
set within "C then P and Q lie together in some connected subset of the 
set which lies in C. See Hans Hahn, Mengentheoretische Characterisierung 
der stetige Kurve, Wiener Sitzungsberichte, vol. 123, Part Ha, pp. 2433-
2489. For other characterizations of the continuous curve from a point 
set standpoint see R. L. Moore, A report on continuous curves from the 
viewpoint of analysis situs, this Bulletin, vol. 29 (1923), pp. 289-302. 

§ If A and B are distinct points, then a simple continuous arc from A to 
B is defined by Lennes as a closed connected set containing A and B but 
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of which it is the common boundary. Jordan also supplied a 
proof of this theorem. However, his proof is unsatisfactory in 
many respects, particularly because he assumes the theorem 
for the case where the simple closed curve is a simple 
polygon.* The theorem was first proved completely by 
Veblen.f Numerous other proofs of the Jordan curve 
theorem have been given by other mathematicians, among 
whom we might mention Brouwer, Schoenflies, Alexander, 
de la Vallée Poussin, Bliss, Ames, Winternitz, and others. J 
The simple closed curve, in addition to dividing its plane 
into two domains of which it is the common boundary, has 
the property that each point of the curve is approachable from 
both domains.§ Schoenflies has proved the following 
theorem which is commonly known as the converse of the 
Jordan curve theorem : 

Suppose K is a closed bounded set of points lying in a 
euclidean plane S and S — K is the sum of two sets Kx and K2, 
which are mutually exclusive and are such that 

(1) If P and Q are any two points of Ki (i= 1, 2), then there 
exists an arc from P to Q entirely in Ki ; 

(2) A n arc from a point of Kx to a point of K2 must contain at 
least one point of K ; 

containing no proper connected subset tha t contains both A and B. A 
subset is a proper subset if its complement in the set is not vacuous. See 
N . J . Lennes, Curves in non-metrical plane analysis situs with an application 
in the calculus of variations, American Journal, vol. 33 (1911), pp. 287-326. 
A simple closed curve is the sum of two arcs AXB and A YB which have no 
points in common other than A and B. A simple closed curve may also be 
defined as the set of all points which can be put into (1-1) continuous corres­
pondence with the points of the circle. 

* See C. Jordan, Cours d'Analyse, Paris, 2d edition, p . 92. 
f See O. Veblen, Theory of plane curves in non-metrical analysis situs > 

Transactions of this Society, vol. 6 (1905), pp. 83-98. 
% For a complete list of proofs of this theorem see the article by Rosen-

thai in the Encyklopâdie der Mathematischen Wissenschaften, Bd. II3 , 
Heft 7. 

§ A set of points M is said to be approachable from a domain D, if 
whenever P is a point of M and Q is a point of D, then there exists an arc 
PQ, which lies except for P entirely in D. 
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(3) If P is a point of K and Q is a point not in K, then there 
exists an arc from P to Q, lying except for P entirely in S — K* 

R. L. Moore has proved that an open curve, that is, the 
set of points in (1-1) continuous correspondence with a 
straight line, divides its plane into two regions, similar to 
those made by the simple closed curve in the bounded case.f 
A proof of the converse theorem for the unbounded case 
has been given by the author of the present paper.J 

Brouwer has proved the n-dimensional Jordan curve 
theorem, that is, that if T is a set of points in (1-1) contin­
uous correspondence with the set xf +x? +xf + • • • +xn

2= 1, 
lying in euclidean space of n dimensions, then T divides 5 
into two regions, of which it is the common boundary.! 
Veblen has proved that w-space is decomposed by a poly­
hedron. Veblen's proof does not use continuity considera­
tions, in that he bases his proof on axioms I—VIII of his 
thesis, together with axioms which insure the existence of 
n + 1 points not all lying in the same (w —l)-space and an 
w-dimensional closure axiom. No assumption of the archi-
medean axiom or the axiom of continuity is made.|| In this 
connection there is work of an extremely fundamental nature 
which has been done by J. W. Alexander. 1f 

* See Schoenflies, Ueber einen grundlagenden Satz der Analysis Situs, 
Göttinger Nachrichten, 1902, p. 185. 

t See R. L. Moore, On the foundations of plane analysis situs, Transac­
tions of this Society, vol. 17 (1916), pp. 131-164. An open curve is defined, 
by Moore, from a point set standpoint, as a closed connected set of points 
M such tha t if P is any point of the set thenM— P is the sum of two mutually 
separated connected sets. 

X See my paper, The converse of the theorem concerning the division of a 
plane by an open curve, Transactions of this Society, vol. 18, pp. 177-184. 
In a paper presented to the Society at the meeting in Chicago at Christmas 
1925, P. M. Swingle has shown tha t in the presence of the other conditions, 
condition (1) may be omitted in both Schoenflies' theorem and mine. For 
an abstract of Swingle's paper see this Bulletin, vol. 32 (1926), p . 110. 

§ See L. E. J. Brouwer, Mathematische Annalen, vol. 71 (1912), p. 314. 
|| See O. Veblen, On the decomposition of n-space by a polyhedron, Trans­

actions of this Society, vol. 13 (1912). 
Tf See A proof and extension of the Jordan-Brouwer separation theorem, 

Transactions of this Society, vol. 23 (1922), pp. 333-349. 
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The converse of the Jordan curve theorem does not hold 
in three dimensions; this can very easily be seen if one 
considers the point set obtained from a sphere by deforming 
it continuously so that diametrically opposite points are 
brought together along a diameter. The set thus obtained 
will have the property of dividing three-space into just two 
domains of which it is the common boundary and such that 
each point is approachable from both domains; the set 
cannot be put into (1-1) continuous correspondence with a 
sphere. I t seems probable that, in order to obtain a 
theorem analogous to the converse theorem of Schoenflies 
for two dimensions, one will be forced to use a stronger type 
of approachability. This appears likely because in the proof 
of Schoenflies' theorem very strong use is made of the fact 
that if A and B are points of the separating set and AXB 
and A YB are arcs lying except for A and B entirely in the 
interior and exterior, respectively, then the sum of AXB 
and A YB divides the space. This division does of course not 
hold in three dimensions and it appears probable that one 
will need an approachability, that will a t least have an ana­
logous separation property to that possessed by the arcs in 
the plane. 

Schoenflies next set himself the problem : What will happen 
if one immerses a continuous curve in a euclidean space of two 
dimensions} Of course it is not necessary that the continuous 
curve shall divide the plane, for consider merely the case 
where we have a square plus its interior.* Schoenflies 
shows that if a continuous curve divides its plane then (1) 
there are in the complement of the continuous curve M at 

* Tha t a continuous curve should fail to divide its plane, it is necessary 
and sufficient t ha t every maximal cyclic curve of the set should be a simple 
closed curve plus its interior. A continuous curve M is said to be a cyclic 
curve if every pair of points belonging to the curve lie on some simple 
closed curve which is a subset of M. A cyclic curve K is said to be a maximal 
cyclic curve of the continuous curve M, if K is not a proper subset of any 
other cyclic curve belonging to M. See G. T. Whyburn, this Bulletin, vol. 
33, p .520. 



160 J. R. KLINE [Mch.-Apr., 

most a finite number of maximal connected subsets* of diam­
eter greater than a preassigned ef, [£>0], and (2) every 
point on the boundary of a complementary domain is 
approachable from all sides from the domain.J A condition 
that is equivalent to Schoenflies' condition (2) is furnished 
by assuming that the boundary of a complementary domain 
is regularly accessible, that is, if for every point P on the 
boundary of a complementary domain D and every preas­
signed e[e>0], there exists a o€ such that if X is a point of 
D at a distance from P less than 5e, then X and P may be 
joined by an arc in D except for P and of diameter less 
than e.§ These two properties tell us about points of the 
continuous curve which are on the boundary of a comple­
mentary domain. But it is evident that there are continuous 
curves in which there are points not on the boundary of any 
complementary domain. Let [N] be the set of all points of 
the continuous curve M not on the boundary of any com­
plementary domain. Then (a) if P is a point of [N], Whyburn 
shows that for every e > 0, there is in M a simple closed curve 
of diameter less than e which encloses Plj, and (b) M— [N], 

* A set K is said to be a maximal connected subset of a set M if K is a 
connected subset of M but is not a proper subset of any other connected 
set in M. 

t I t is interesting tha t this is still t rue if S, the euclidean plane of the 
hypothesis, is replaced by any plane continuous curve and T is a subcon-
tinuous curve of 5 . It is not true, however, if S is a continuous curve in 
three dimensions. See W. L. Ayres, Concerning continuous curves and 
correspondences, Annals of Mathematics, vol. 28 (1927), pp. 396-399. 

t Suppose P is a point on the boundary of a complementary domain D 
of the continuous curve M, while A and B are points of this boundary which 
are distinct from P. Let AXB be an arc lying except for its end points 
entirely within D while D\ is any one of the subdomains of D made by 
AXB which has P on its boundary. Then, if for every point Q of P i , there 
is an arc from P to Q lying entirely except for P and Q in D\, then P is said 
to be approachable from all sides. See Schoenflies, Die Entwicklung der 
Lehre von Punktmannigfaltigkeiten, zweiter Teil, Leipzig, 1908, p . 237, for a 
proof t ha t these two conditions form a necessary and sufficient set tha t a 
subcontinuum of a euclidean plane be a continuous curve. 

§ See G. T . Whyburn, Concerning continua in the plane. Transactions of 
this Society, vol.29 (1927), p.370. This paper will hereafter be referred to 
a s W . T . 

|| See G. T . Whyburn, this Bulletin, vol. 33 (1927), p . 262. 
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that is, the sum of the boundaries of the complementary 
domains of M, is strongly connected if and only if [N] does 
not separate the plane even in the weak sense.* If we have 
only condition (1) of Schoenflies' theorem, then while result 
(b) is still true, the statement (a) must be modified because 
we can only say tha t for every P of [N] and every d > 0 , 
there exists a continuum (not necessarily a simple closed 
curve), of diameter less than d separating P from all the 
points of the plane at a distance from P greater than d, 
and M is connected im kleinen at P. Thus whenever condition 
(1) of Schoenflies, theorem holds and (2) fails, then all the 
points a t which the continuum fails to be connected im 
kleinen, lie on the boundary of some complementary domain. 
The conditions of Schoenflies, while necessary and sufficient 
that a two-dimensional continuum be a continuous curve, are 
neither necessary nor sufficient for a continuum in euclidean 
space of three dimensions. This has been shown by R. L. 
Moore, t 

Let us now consider two points A and B {A and B may or 
may not be points of the continuous curve M) which have the 
property that every arc from A to B contains a point of M, 
different from A and B. Under these circumstances (a) 
there is a simple closed curve lying in M which separates 
A from B% and (b) while every arc from A to B must contain 
at least one point of M, it is always possible to join A and B 
by an arc tha t does not separate ikf.§ I t follows from (a) 

* See G. T. Whyburn, this Bulletin, vol. 33 (1927), p. 389. 
t See R. L. Moore, Concerning the relation of a continuous curve to its 

complement in three dimensions, Proceedings of the National Academy, vol. 
8 (1922), pp. 33-38. 

% This result was obtained for the case where both A and B belong to 
the complement of M, by R. L. Moore. See Concerning continuous curves 
in the plane, Mathematische Zeitschrift, vol. 15 (1922), p. 159. The case 
where A and B do not belong to the complement of M was handled by 
C. M. Cleveland, Concerning points of a continuous curve that are not 
accessible from each other, Proceedings of the National Academy, vol. 13 
(1927), pp. 275-276. 

§ See R. L. Moore, Concerning paths that do not separate a continuous 
curve, Proceedings of the National Academy, vol. 12 (1926), p. 745. 



162 J. R. KLINE [Mch.-Apr., 

that no acyclic continuous curve* divides its plane. Wilder 
has shown that every subcontinuum of the boundary of a 
complementary domain of a continuous curve is itself a 
continuous curve.t 

The papers, which we have mentioned so far, have con­
sidered the continuum as given and have asked the question : 
What can be said of the complementary domains and their 
relation to the continuous curve and its subsets'? Then there is 
also the inverse problem of having a domain given and asking 
under what conditions the boundary of a single domain shall 
be a continuous curve or some particular type of continuous 
curve. Carathéodory first obtained conditions under which 
the boundary of a single domain will be a simple closed 
curve. J In his treatment, conditions are imposed both upon 
the boundary and on the relation of the domain to the 
boundary. In 1918, R. L. Moore found conditions on the 
domain, without any reference to the boundary, these conditions 
being necessary and sufficient that the boundary of the 
domain be a simple closed curve. The condition is that the 
domain be uniformly connected im kleinen, that is, for every 
€>0 , there exists a ô such that if X and Y are two points of 
the domain at a distance from one another less than S, then 
they can be joined by a connected subset of the domain of 
diameter less than e.§ He afterwards proved that if one 
requires that the boundary of a simply connected domain be 
merely a continuous curve instead of specifying that it be the 
particular type of continuous curve known as a simple closed 
curve, then the condition of being uniformly connected im 
kleinen may be replaced by a weaker requirement, namely 

* An acyclic continuous curve is a continuous curve that contains no 
simple closed curves. This term was first introduced by H. M. Gehman. 
Menger and a number of foreign writers call the same sets "Baumkurven." 

t See W. F., loc. cit., Theorem 11, p. 361. 
Î See C. Carathéodory, Mathematische Annalen, vol. 73 (1912-1913), 

p. 366. 
§ See R. L. Moore, A characterization of Jordan regions by properties 

having no reference to their boundaries, Proceedings of the National Academy, 
vol. 4 (1918), pp. 364 370. 
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that of having the S-property,* that is, that for every 
e [e > 0 ] the set may be expressed as the sum of a finite number 
of connected sets of diameter less than e.f Conditions equiva­
lent to the assumption of the 5-property for the domain 
have been given by Wilder and Whyburn but in both cases 
the conditions are of a different character from those of 
Moore in that they place restrictions on the boundary while 
Moore's are upon the domain alone. The condition of 
Wilder is that every connected subset of the boundary be 
connected in the strong sensej while Whyburn's is that 
every point of the boundary be accessible from all sides 
from D, the domain.§ Whyburn also shows that a necessary 
and sufficient condition that a continuous curve M be the 
boundary of a connected domain is that, if J denotes any 
simple closed curve in M, then (1) J+I or J+E, where I and 
E denote respectively the interior and exterior of / , contain 
M as a subset and (2) if A and B are any two points of 
J", then M—(A+B) is not connected.|| 

There is still a third type of problem that must be con­
sidered under the general heading of the separation of the 
plane by continuous curves. The papers which we have 
discussed have either (a) taken a given continuous curve and 
examined its complement or (b) considered a domain as given 
and hunted for conditions under which the boundary was a 
continuous curve. The problem in the second case is equiva­
lent to that of being given a domain and asking under what 
conditions the maximal connected subsets of the comple­
ment are continuous curves. In both cases the separating set 
was either given or was found by taking certain limiting 
points of sets tha t were given. Let us now consider the 
problem where the sets to be separated are given and the 

* See W. Sierpinski, Sur une condition pour qu'un continu soit une courbe 
jordanienne, Fundamenta Mathematicae, vol. 1 (1920), pp. 44-60,. 

t See R. L. Moore, Concerning connectedness im kleinen and a related 
property, Fundamenta Mathematicae, vol. 3 (1922), pp. 232-237. 

% See W. F., loc. cit., Theorem 19, p. 375. 
§ See W. T., loc. cit., p. 370. 
II See W. T., loc. cit., Theorem 6, p. 380. 
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dividing sets must be found and can in general not be 
found by merely taking limit points of sets that are already 
given. 

In 1905, Zoretti showed that if K is a bounded maximal 
connected subset of a plane closed set M and e is any positive 
number, then there exists a simple closed curve J enclosing 
K, passing through no point of M and such that every point 
of J is at a distance less than e from some point of K.* I t is 
evident that while every point of / is at a distance less than 
e from some point of K, this is not true of all points within / . 
For example K might be a simple closed curve of diameter 
greater than 2e which is in the set M. Moore shows that in 
the case where the set K of our hypothesis does not separate 
its plane, then in addition to Zoretti's requirements, the 
simple closed curve / may be so constructed as to have all 
points within it at a distance less than e from some point of 
K. Thus with the use of these theorems, if K and H 
are mutually exclusive maximal connected subsets of the 
closed set M and neither K nor H separates its plane, then 
we can get a simple closed curve containing one, excluding 
the other and passing through no point of M. If the continua 
K and H satisfy all the previous conditions except that 
instead of being mutually exclusive they may have a totally 
disconnected set T in common, then we can construct a 
simple closed curve that encloses K—T and has H— T in its 
exterior whenever K—T is connected.! Lubben has carried 
this work further and has obtained some very interesting 
results, one of the most important of which is the set of 
necessary and sufficient conditions for the separation of two 

* See L. Zoretti, Sur les fonctions analytiques uniformes, Journal de 
Mathématiques, (6), vol. 1 (1905), pp. 9-11. 

f For a proof of these theorems see R. L. Moore, Concerning the sepa­
ration of point sets by curves, Proceedings of the National Academy, vol. 11 
(1925), p . 469. The theorems mentioned have been for the bounded case. 
Moore also considers the case of being given a collection of unbounded 
continua and constructing open curves which shall separate sets of the 
collection. 
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sets by a simple closed curve embodied in the following 
theorem : 

If K and II are closed bounded point sets, whose common part 
T is a totally disconnected set, while K is a continuum, then 
a necessary and sufficient condition that there exist a simple 
closed curve containing a subset of T but containing no point of 
K+H—T and separating K — T from H—T is the following: 
H—T (1) is a subset of a complementary domain of K and (2) 
is not separated by K near T.* 

Practically nothing has been done with the corresponding 
problem in three dimensions. Tha t the problem is an 
extremely complex one may be seen from an example in the 
work of Urysohn, in which he exhibits a closed totally dis­
connected set T having the property that, while for every 
€>0 , the set may be decomposed into a finite number of 
mutually exclusive parts each of diameter less than e and 
each of these parts enclosed in a polyhedron not cutting 
any other polyhedron of the set, it is not always possible to 
choose these polyhedra so that each will be of genus zero. Indeed 
it may happen that the genus must become infinite as e ap­
proaches zero.] 

3. S is a Euclidean Plane and T is a Continuum or Sum of 
Continua, not necessarily Continuous Curves. Here we are met 
with a situation that may be considerably more compli­
cated. We might expect that a certain advantage would be 
gained by regarding the continuum as the sum of certain 

* If K, H, and T a r e point sets, then the statement tha t H—KH is not 
separated by K near T means tha t if P is a point and C is a circle about P , 
then there exists a circle C' with the same center such tha t any pair of 
points x and y oîH—KH within C' can be joined by a connected point set 
which contains no points of K and is entirely within C. See R. G. Lubben, 
The separation of plane point sets by curves, this Bulletin, vol. 32 (1926), p . 
200. For abstracts of other results by Lubben on the same general problem 
see this Bulletin, vol. 32, pp. 13, 114, and 200. 

t See P. Urysohn, Mémoire sur les multiplicités cantoriennes, Funda-
menta M a t h e m a t i c a l vol. 7 (1925), p . 121. Examples of a similar nature 
have been given by Antoine in his thesis, Sur Vhomêomorphie de deux figures 
et de leurs voisinages. 
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properly chosen subcontinua analogous to the case in the 
Jordan curve theorem, where a number of the proofs depend 
very strongly on the fact that the simple closed curve is the 
sum of two arcs which have no points other than their end 
points in common. However, this separation is not always 
possible, for we are forced to consider the case where our 
continuum may be indecomposable, that is, where it cannot be 
expressed as the sum of two distinct proper subcontinua. 
These continua were first introduced by Brouwer* and have 
been the subject of a great deal of work by Mazurkiewicz, 
Kuratowski, Knaster, Urysohn and others. With the aid of 
these continua examples have been given of continua which 
divide the plane into any finite number n [n^3] or a count­
able infinity of domains, every point of the continuum being 
a boundary point of each of the domains. In this connection 
it is interesting to notice that a point set K cannot be the 
common boundary of three mutually exclusive domains if 
there are in K two points A and B each of which is accessible 
from all three of these domains, f 

Let us first consider the case where we shall regard our 
continuum as a single continuum and not as split up into 
various proper subsets. We will recall the result of R. L. 
Moore, who showed that whenever two points A and B are 
separated by the continuous curve T, then T contains a 
simple closed curve which also separates A from B. The 
simple closed curve has the property that, while it effects a 
separation of the plane between A and B, no proper subset 
of the simple closed curve will separate the plane between A 
and B. We shall say with Kuratowski that the point set K 
is an irreducible separating set of the plane between A and B} 

* See L. E. J. Brouwer, The impossibility of a linear arrangement of the 
points of an irreducible continuum, Proceedings Academy, Amsterdam, 
vol. 14 (1911), p. 144. If A and B are distinct points, then an irreducible 
continuum from A to B is defined by Zoretti as a closed connected set of 
points containing A and B but containing no proper closed connected 
subset containing both A and B. See Zoretti, Annales de l'École Normale, 
vol. 26 (1909). 

t See G. T. Whyburn, this Bulletin, vol. 32 (1926), p. 200. 
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whenever K divides the plane into two or more mutually-
separated sets such that A and B belong to distinct sets but 
no proper subset of K effects such a separation between A 
and B. While K may be an irreducible separating set of the 
plane between A and B, there may be a different pair of 
points of the complement of K which can be separated by a 
proper subset of K, as is illustrated by the following example: 

FIGURE 1. 

A set is said to be a completely irreducible separating set of the 
plane if the set K divides the plane between some pair of 
points but no proper subset of K divides the plane between 
any pair of points. Kuratowski has proved tha t : 

(1) Every continuum separating the plane between A and B 
contains an irreducible separating set K between A and B 
and this set K is a continuum. 

(2) Every continuum which divides its plane into at most a 
finite number of complementary domains contains a com­
pletely irreducible separating set.* 

* B. Knaster has given an example of a continuum which separates its 
plane into a countably infinite set of domains but contains no completely 
irreducible separating set. See Quelques coupures singulières du plan, 
Fundamenta Mathematicae, vol. 7 (1925), pp. 264-289. 
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(3) Every completely irreducible separating set is either 
an indecomposable continuum or the sum of two continua 
each irreducible between the same pair of points. If the plane 
is divided into more than two domains by the irreducible 
separating set, then the set is either an indecomposable 
continuum or the sum of two such continua.* 

Suppose we take a continuum, containing more than one 
point, which has the property that for every subset K of M 
that is connected, the set M—K is connected in the weak 
sense. I have proved that every such continuum is a simple 
closed curve.t If instead of assuming that K is any connected 
subset of M, we restrict ourselves to the case where K is a 
closed connected subset of M then 

(1) I have shown that, if the plane continuum M is not 
indecomposable and M—K is connected in the weak sense, 
then M must divide its plane and in case M is a continuous 
curve, then M must be a simple closed curve. J 

(2) Kuratowski has shown that if in this case we assume 
that M— Kis connected in the strong sense, then K must be a 
simple closed curve.§ Kuratowski's result is no longer true if 
we merely say that M — K is connected in the weak sense. 
Consider the set composed of ;y = sin(l/x) [ 0 < x ^ l /V], the 
F-axis between (0, + 1 ) and (0, — 1) and an arc from (0, — 1) 
to (l/7r) which has no point except its end points in common 
with the other sets. This set is connected in the weak sense 
after the removal of the set consisting of the portion of the 

* For a proof of these results of Kuratowski, see Sur les coupures irré­
ductibles du plan, Fundamenta Mathematicae, vol. 6 (1924), pp. 130-146. 
Results of a similar character were announced by G. A. Pfeiffer but never 
published. For an abstract of Pfeiffer's results, see this Bulletin, vol. 29 
(1923), p. 151. 

t See my paper Closed connected sets which remain connected upon the 
removal of certain' connected subsets, Fundamenta Mathematicae, vol. 5 
(1924), pp. 3-11. 

% See my paper, Concerning the division of the plane by continua, Pro­
ceedings of the National Academy, vol. 10 (1924), pp. 176-177. 

§ C. Kuratowski, Contribution à Vétude de continus de Jordan, Funda 
menta Mathematicae, vol. 5 (1924), pp. 119-122. 
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F-axis between the origin and (0, — 1) but not connected in 
the strong sense. 

R. L. Wilder has investigated the properties of sets M 
which are connected and remain connected upon the removal 
of any connected subset, when one omits the condition that 
the set is closed. Such sets he calls quasi-closed curves. I t is 
found that (1) if A and B are any two distinct points of M, 
then M is the sum of two sets M± and M2 each of which 
contains A and B, is irreducibly connected from A to B 
and such that Mi— (A— B) and M2—(A —B) are mutually 
separated sets, (2) M separates the plane, and (3) if M is 
connected im kleinen at all its points, then M is a simple 
closed curve. The last result is particularly interesting as it 
gives a characterization of a simple closed curve in which the 
property of being closed is not assumed.* 

Using the notion of prime parts of a continuumf, intro­
duced by Hahn, R. L. Moore has further shown that if the 
plane continuum M has more than one prime part and no one 
of its prime parts separates the plane, then a necessary 
and sufficient condition that S— M should be the sum of just 
two mutually exclusive domains of which M is the common 
boundary, is that for every subcontinuum K of M, M—K is 
connected. Under the same hypothesis, in order that S—M 
shall be the sum of two mutually exclusive domains such that 
each prime part of M will contain at least one limit point of 
each domain, it is necessary and sufficient that I f be a simple 
closed curve of prime parts in the sense that it is discon­
nected by the omission of any two of them which are not 

* The results mentioned in (1) and (2) were presented at the Inter­
national Mathematical Congress at Toronto and will appear in the Pro­
ceedings of that Congress. The one marked (3) is found in abstract in this 
Bulletin, vol. 32 (1926). 

t If P is a point of a continuum K, then the prime part of K, which 
contains P is defined by Hahn as the set of all points [X] such that for 
every positive number e[e>0], there exists a finite number of irregular 
points of K, Xi, X2, X3, • • • , Xn, such that Xx is P, Xn is X and for every 
i the distance X» to X»+i is less than e. A point is said to be an irregular 
point of Ky if K is not connected im kleinen at the point. See Hans Hahn, 
Ueber die irreducible Continua, Wiener Berichte, vol. 130 (1921). 
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identical.* Whyburn has also proved that if a bounded closed 
set separates the plane in the weak sense but no proper 
subset does so, then the set must be a simple closed curve. 

In this connection I wish also to call attention to an ex­
tremely interesting result of Urysohn, who has proved that if 
K is the common boundary of two connected domains in 
space of three dimensions and T is a totally disconnected 
subset of K (that is, a set which contains no connected sub­
sets other than single points) which is closed, then K—T 
must be connected, f 

Let us now consider the case where T is the sum of two 
or more continua. The first result in this direction is the 
famous Brouwer-Phragmen theorem, which states that if A 
and B are any two closed bounded sets, which have no points 
in common and neither of which disconnects the plane, then 
their sum cannot separate the plane. Mazurkiewicz in vol­
ume 3 of the Fundamenta has proved the unbounded case of 
the Brouwer-Phragmen theorem. 

This fundamental result has been extended as follows. 
(a) By a young Polish mathematician, Strasziewicz, who 

shows that the theorem also holds if we allow the common 
part to be connected.% This result is also contained implicitly 
in the work of Miss Mullikin.§ 

(b) By Miss Mullikin, who shows that if Au A2, A*, • • • 
is a countable set of closed sets, no one of which separates 
the plane, then their sum cannot do so.|| 

* For the first of these results see Concerning the common boundary of 
two domains, Fundamenta Mathematicae, vol. 6 (1925), p. 203. 

t See P. Urysohn, Mémoire sur les multiplicités cantoriennes, Funda­
menta Mathematicae, vol. 7 (1925), pp. 103-119. 

I See S. Strasziewicz, Ueber eine Verallgemeinerung des Jordan1 schen 
Kurvensatz, Fundamenta Mathematicae, vol. 4 (1923), pp. 129-135. 

§ See Transactions of this Society, vol. 23 (1922). 
|| Loc. cit., Theorem 3, pp. 148-155. A new proof of this interesting 

theorem has been given by Mazurkiewicz in Fundamenta Mathematicae, 
vol. 6, pp. 37-38. This theorem is closely connected with a theorem of 
mine Concerning the complement of a countable infinity of point sets of a 
certain type, this Bulletin, vol. 23, pp. 290-292. For extensions of my 
theorem see the abstract of a paper by R. L. Wilder, this Bulletin, vol. 33 
(1927), p . 388. 
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For the extension of the Brouwer-Phragmen result to 
n dimensions there is an extremely interesting result by 
Alexandroff which may be stated as follows. 

Suppose that in euclidean space of n dimensions 1 we have 
two closed sets F\ and F2, neither of which decomposes the space. 
Then if the common part of these sets is of dimension* not greater 
than n — 3the sum Fi + F'2 cannot decompose the space En. The 
common frontier of two connected domains of En is a cantori-
an multiplicity of dimension n — 1. | 

There is also a theorem closely related to the preceding 
extensions of the Brouwer-Phragmen theorem, in which we 
are given some further information about points in the 
sum. The theorem is one of Gehman's and is as follows. 
If N is a closed bounded set consisting of a collection of 
connected sets (E), each of which is a maximal connected 
subset of N, no one of which separates the plane S, and no 
more than a finite number are of diameter greater than any 
preassigned positive number, then N cannot separate the 
plane and moreover if a point P of a maximal connected 
subset e of E is accessible from S — e, then P is accessible 

fromS-N.t 
The theorems of the present section have been negative 

theorems in the sense that they have told us that when the 
individual sets have certain properties, then the sum cannot 
decompose the plane. When we look for theorems of a positive 
type, we are first met by the results of Janiszewski and Miss 
Mullikin, who working independently obtained the following 
important results. 

(a) If A and B are closed and connected bounded sets, neither 
of which disconnects the plane, and have a common part which is 
not connected, then their sum must disconnect the plane. 

* This concept will be defined in the next section of the present paper. 
t See P. Alexandroff, Comptes Rendus, vol. 183, p. 722. A cantorian 

multiplicity is defined by Urysohn as a continuum which remains con­
nected upon the removal of any closed set of dimension not greater than 
rc-2. 

% See H. M. Gehman, Concerning acyclic continuous curves', Transactions 
of this Society, vol. 29 (1927), pp. 558-560. 
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(b) If the common part of A and B consists of exactly two 
maximal connected sets, then the plane is divided into exactly 
two parts by their sum* 

Knaster and Kuratowski have proved that these results 
remain true, if one only of the continua of the hypothesis 
is assumed bounded. When both are unbounded, then a 
necessary and sufficient condition that the sum should cut the 
plane when neither of the continua alone cut it, is that their 
common part should contain a maximal connected set which 
is bounded.! StrasziewiczJ has also proved that if the 
common part reduces to exactly n maximal connected 
sets which are maximal, then there are exactly n comple­
mentary domains. Still other results in this connection have 
been given by Mrs. Nikodym.§ 

Rosenthal has considered a closely related question. He 
replaces the assumption that neither A nor B divides 
the plane by the following. Both A and B are continua which 
are irreducible between the same pair of points a and b and 
which have no other points in common. His principal result 
is tha t the complement of the sum with respect to its plane 
consists of two principal domains (Hauptgebiete), each of 
which has the entire sum as its boundary, and possibly of 
a number of secondary domains (Nebengebiete), each of 
which has its frontier wholly in either A or B.\\ W. A. Wilson 
has generalized these results by showing that this theorem 
of Rosenthal remains true if the two continua A and B 
have in common two point sets a and ]8, where a-j8 = 0, if 

* See S. Janiszewski, Sur les coupures du plan faites par continus, Prace 
Matematyczne-Fisyczne, vol. 36 (1913). This paper is in Polish and the 
results contained therein were unknown to Miss Mullikin at the time of her 
work, which was published in the previously quoted paper, pp. 154-162. 

t See Sur les continus non-bornés, Fundamenta Mathematicae, vol. 5 
(1924), p. 36. 

t See Strasziewicz, Ueber die Zerschneidung der Ebene, Fundamenta 
Mathematicae, vol. 7 (1925), pp. 159-188. 

§ See S. Nikodym, Sur les coupures du plan, Fundamenta Mathemati­
cae, vol. 7 (1925), pp. 14-23. 

|| See A. Rosenthal, Teilung der Ebene durch irreducible Kontinua, 
Sitzungsberichte der Münchener Akademie, 1919, pp. 91-109. 



1928. SEPARATION THEOREMS 173 

each of the continua A and B is irreducible between any point 
a of a and any point b of j8, and both A and J5 are decom­
posable or one of them is indecomposable and the other is not 
the union of two indecomposable continua. He also shows 
that the frontier of any secondary domain is part of either a 
continuum of condensation, an indecomposable continuum, 
a pair of indecomposable continua, or the union of an in­
decomposable continuum and a continuum of condensation.* 

When we are working in three dimensions, the conditions 
of Janiszewski and Miss Mullikin are neither necessary nor 
sufficient. Tha t the condition is not necessary may be seen 
if we consider the sets A and B, where A is the set composed 
of the great circle g of the sphere K plus one of the hemis­
pheres cut off by g, while B is the other hemisphere plus g. 
That the conditions are not sufficient may be seen by con­
sidering the set composed of two arcs AXB and A YB, which 
have no point in common other than A and B. In the ninth 
volume of the Fundamenta Mathematicae, Mazurkiewicz 
and Strasziewicz have obtained conditions, which are 
sufficient but not necessary that the sum of two sets, neither 
of which separates three-space, should separate the same. Let 
us first introduce several definitions. 

To every point / of the interval h^t^t2, we make corres­
pond a point X(t) and suppose that the function X(t) is 
continuous for the interval under consideration. This defines 
a continuous curve, which we shall call closed if it is true 
that X(h) and X(t2) are the same. Let B be a closed point set 
having no points in common with the closed continuous 
curve M. Then we shall say that M is free with respect to Bf 

if there exists a function of two variables Y(t> X) defined and 
continuous for h^t^t2 and 0 ^ X ^ 1 where 

(a) Y(t, X) has nothing in common with B for all values of 
the variables, 

(b) Y(tu\) = Y(t2,\), 
(c) F(/, l)=X(t), for all values of t and Y(t, 0)=x0, a 

* See W. A. Wilson, this Bulletin, vol. 33 (1927), pp. 733-744. 
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constant. In case this function does not exist, then the curve 
is said to be interlaced with B. A closed set in three dimen­
sions is said to be interlaceable if there exists a closed curve that 
is interlaced with B. 

On the basis of these definitions, the authors prove the fol­
lowing theorems. 

THEOREM I. If A and B are closed sets neither of which 
divides three-space between the points P and Q and if the common 
part AB is not interlaceable then their sum does not divide three-
space between P and Q* 

THEOREM I I . If A and B are closed sets neither of which cuts 
three-space y then their sum cuts three-space if their common part 
is interlaceable while neither of the sets is interlaceable.] 

4. General Dimension Theory. Up to the present we have 
considered our containing set to be a euclidean space of n 
dimensions, that is, a space satisfying, let us say, Veblen's 
axioms for geometry with sufficient additional axioms to allow 
for the existence of n + 1 points not all in the same (w —1)-
space, together with an n-dimensional closure axiom. We 
shall, of course, wish to speak of various sets in this n-dimen-
sional space as having a dimension ky where k may assume all 
values from zero to n. Various mathematicians have con­
sidered this problem of assigning a dimension to subsets of 
euclidean space of n dimensions. Of course, a theory based 
on a set of axioms for euclidean geometry is bound to have 
a special character due to the interplay of the special prop­
erties of ordinary space; and it is for this reason that the 

* Alexandroff has recently pointed out that Theorem I is a special case 
of a theorem due to Alexander. See J. W. Alexander, loc. cit., p. 342. 
Using Alexander's methods and the notion of the Betti Numbers for a 
general closed set introduced by himself, Alexandroff has obtained inter­
esting extensions of the Brouwer-Phragmen theorem and of the Janiszew-
ski-Mullikin theorem. See P. Alexandroff, Zum verallgemeinerten Phrag-
men-Brouwer'schen Satz, Fundamenta Mathematicae, vol. 11 (1928), 
pp. 222-227. 

t See S. Mazurkiewicz and S. Strasziewicz, Sur les coupures de Vespace, 
Fundamenta Mathematicae, vol. 9 (1927), pp. 205-211. 
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founders of the recent developments in dimension theory, 
Menger and Urysohn, considered themselves immersed in a 
more general space and considered the problem of assigning 
a dimension to sets in general metric space. 

Let us consider a set of elements, E, about which nothing is 
assumed as to their nature, and a non-negative function 
r(x, y) satisfying the following conditions: 

(1) r(x,y)=r(y,x); 
(2) r(x, y) = 0, if and only if x and y are identical; 
(3) r(x,y)^r(y,z)+r(z,x). 

We shall assume that our space in addition to having the 
above distance function, which makes it a metric space, has 
the property of being compact, that is, every infinite set of 
distinct points has a limit point. 

A rather complete survey of the early attempts to define 
dimension has been given by Menger,* in which he also 
shows how each of these at tempts is unsatisfactory be­
cause it assigns a dimension to certain sets which is differ­
ent from the dimension we would intuitively assign to it; for 
example the definition of Zoretti of a one-dimensional con­
tinuum as an irreducible continuum would assign the dimen­
sion one to the surface of a cube which can be a subset of an 
irreducible continuum in three dimensions. I t is rather inter­
esting to note that this problem received a satisfactory solu­
tion almost simultaneously at the hands of two young 
mathematicians, one a Russian, Urysohn, and the other 
an Austrian, Menger. The theories of these two men are 
equivalent for compact metric spaces.^ The theory of Urysohn 
might be characterized as an im kleinen while that of Meng­
er is an im grossen theory. We shall first take up the 
Urysohn theory.% 

* See K. Menger, Bericht iiber die Dimensionstheorie, Jahresbericht der 
Vereinigung, vol. 35 (1926), pp. 113-150. 

f For an example of a space satisfying Hausdorff's four axioms for 
topological space and which contains a set t ha t is two-dimensional accord­
ing to the definition of Menger, but zero-dimensional by Urysohn's defini­
tion, see an article by L. W. Cohen, Comptes Rendus, 1927. 

J See P . Urysohn, loc. cit.; and also Fundamenta Mathematicae, vol.8 
(1926). 



176 J. R. KLINE [Mch.-Apr., 

Let P be a point of the set C which lies in a compact metric 
space and e any positive number. Then we shall say that 
we have an ^-separation of C at point P if we have the follow­
ing conditions satisfied : 

(1) C = A+B+D, where A, B, and D are mutually ex­
clusive sets; 

(2) A contains P; 
(3) A+B is of diameter less than e; 
(4) A and D are mutually separated sets. 
We shall now define the dimension of a point set as follows: 
(1) The dimension of the vacuous set shall be — 1 ; 
(2) A set shall be zero-dimensional at a point P if C can be 

separated at P by a vacuous set, that is, by a set of dimen­
sion — 1 ; 

(3) The dimension of a point set shall be the greatest 
positive integer that occurs amongst the dimensions of its 
various points, (thus we may have sets whose dimension is 
not finite) ; 

(4) Suppose all the dimensions up to and including the 
(n — l)st have been defined ; then we shall say that a set is of 
dimension n at P if 

(a) The set may be ^-separated at P by a set of dimension 
less than n, 

(b) The dimension of the set at P is not less than n. 
The definition of Menger is as follows: The space is at 

most n-dimensional if every two closed mutually exclusive 
sets of the set can be separated by a set which is at most 
(n—1)-dimensional. The definition given by Menger is 
practically the same as that which Brouwer gave in 1913, but 
which he carried no farther than showing that every subset of 
Rn ( that is, euclidean space of n dimensions) which contains 
an open subset is ^-dimensional, where an open subset is one 
whose complement is closed. The above definitions were 
discovered independently and without any knowledge of the 
definition of Brouwer. In both systems there are the neces­
sary theorems to show that the dimension as defined leaves 
sets, to which our intuition would tell us to assign the dimen-
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sion n, with this dimension. As Menger points out, this defini­
tion is already foreshadowed by Euclid when he calls the line 
that whose boundary is points, the surface that whose bound­
ary is lines, and the solid that whose boundary is surfaces. 

To show that the dimension assigned to a point set is in 
accordance with our intuition and that no contradictions 
arise in applying it, a long series of theorems must be proved 
and in a number of cases the argument is very long and in­
volved. The principal theorems follow: 

(1) The dimension of a point set remains invariant under 
(1-1) continuous transformations. 

(2) If Fit F2, F:h • • • is a countable infinity of closed sets 
each of dimension n, then the sum is of dimension n. 

(3) Every totally disconnected set which is closed is zero-
dimensional. 

(4) The sum of a set of n dimensions and one of m dimensions 
is a set of dimension not more than m+n + 1. With the use of 
this theorem it is proved that every n-dimensional set of a separ­
able space (that is, a space where there is an everywhere dense 
countable set) is the sum of n-\-\ but not fewer zero-dimensional 
sets. 

(5) Every closed domain of euclidean space of n dimensions 
is n-dimensional. 

This last theorem is proved on the basis of a remarkable 
theorem due to Lebesgue, which is as follows. 

If each point of a domain of n dimensions belongs to at least 
one of the closed sets Fi, F%, Fz, • • -, F&, finite in number, and if 
the sets are sufficiently small, then there is a point common to at 
least n + 1 of the sets; on the other hand whatever the domain 
G, and whatever be the diameter of the sets Fi, then it is always 
possible to decompose G so that each point is not common to more 
than n + 1 of the sets* 

* This theorem was first announced by Lebesgue in 1911 (Mathemati­
sche Annalen, vol. 70, pp. 166-168). The complete demonstration of the 
theorem was found for the first time in the work of Brouwer in Crelle's 
Journal, vol. 142 (1913). See also Lebesgue, Sur les correspondences entre 
les points de deux espaces, Fundamenta Mathematicae, vol. 2 (1921), p. 257. 
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Still more remarkable is the result announced by Menger to 
the effect that every set of k dimensions which is closed is a 
subset of some continuous curve lying in euclidean space of 
2& + 1 dimensions.* 

5. Sis a Proper Subcontinuum of the Euclidean Plane and T 
is a Subset of S. For the sake of convenience we shall divide 
the material of this section as follows. 

(a) Cut Points of Continua, that is, points of a continuum 
which separate it. 

(i) Conditions for their Existence, 
(ii) Properties of the Set [C] of all Cut Points, 

(iii) Characterization of Various Types of Continuous 
Curves by Properties of their Cut Points. 

(b) Disconnection by Pairs of Points. 
(c) The Menger Curve Theory. 
(d) The Set T is a Finite Number (or Countable Infinity) 

of Continua. 
5a. Cut Points of Continua. (i) Conditions for their 

Existence. Let us consider three very simple continuous 
curves, the open curve, that is, the set of points in (1-1) 
continuous correspondence with the set of points on a straight 
line, the simple continuous arc from A to B, and the set com­
posed of a square plus its interior. In the first every point is a 
cut point, in the second every point other than A and B is a 
cut point, while in the third there is no cut point. When one 
is examining a continuum as to the existence or non-existence 
of cut points, it is necessary to examine only the boundaries 
of the complementary domains of the continuum, for accord­
ing to a theorem due to G. T. Whyburn, a necessary and suffi­
cient condition that a point P of a continuum M be a cut 
point of M is that it be a cut point of the boundary of some 
complementary domain of M.^ I t one takes two particular 

* See K. Menger, Allgemeine Raume una Cartesische Rüurne, Königliche 
Akademij, Amsterdam, vol. 29 (1927), Nos. 3 and 8. 

t See W. T., loc. cit., p. 389. This theorem is an extension of a theorem 
published in 1925 by R. L. Moore, who showed that in order that a bounded 
continuous curve K should have no cut point, it is necessary and sufficient 
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points A and B of the continuous curve M, then that there be 
a point in M which separates A from B in M, it is necessary 
and sufficient that every two simple continuous arcs in M 
from A to B shall have a point in common different from 
A and B* 

In 1918 Mazurkiewicz showed that (1) every continuous 
curve M which is bounded has at least two points which do 
not disconnect M in the weak sense and (2) every continuous 
curve M which contains a simple closed curve J has the 
property that J contains at most a countable set of points 
which disconnect M in the weak sense. I t will be noticed that 
the points of J which disconnect M do not disconnect J.\ 
In these theorems the condition that M be a continuous curve 
may be replaced by the weaker condition that M be a con­
tinuum. This follows from two theorems of R. L. Moore to 
the effect that (1) every continuum whatsoever contains at 
least two points neither of which disconnect it in the strong 
sense and (2) no continuum M (whether it be a continuous 
curve or not) contains a closed and connected set K (whether 
K is a simple closed curve or not) which contains an un­
countable set of points each of which disconnects M but not 
K.% It is interesting to note that Zarankiewicz has pointed 
out that the demonstration of Moore's second theorem can be 
so modified as to apply to the case where M is merely assumed 
to be connected (bounded or unbounded). The statement of 
Zarankiewicz's theorem is as follows. If N is any connected 

t ha t the boundary of every complementary domain be a simple closed 
curve. See Moore, Concerning the common boundary of two domains, 
Fundamenta Mathematicae, vol. 6 (1925), p . 211. 

* See W. L. Ay res, On the separation of points of a continuous curve by 
arcs and simple closed curves, this Bulletin, vol. 33 (1927), p. 266. 

f See S. Mazurkiewicz, Un théorème sur les lignes de Jordan, Funda­
menta Mathematicae, vol. 2 (1921), pp. 119-130. 

% See R. L. Moore, Concerning the cut points of continuous curves and 
other closed and connected sets, Proceedings of the National Academy, vol. 9 
(1923), pp. 101-102. This paper will hereafter be referred to as M.C.P. 
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subset of a connected set C, then the set of points of N 
which cut N without cutting C is at most countable.* 

(ii) Properties of the Set [C] of all Cut Points. A great deal 
of interesting work has been done on the set [C] composed 
of all cut points of a given continuous curve, particularly as to 
the number of such cut points and various properties pos­
sessed by their subsets. 

Zarankiewicz has shown that the set [C] is a set Fff1 

that is, the sum of a countable infinity of closed sets, f If we 
consider the subset [B] of all points of [C] such that for 
every point & of [B], M — b is neither connected or the sum of 
two connected sets, then [B] is finite or countably infinite.J 
This theorem is proved merely on the assumption that M is 
connected. In case that M is an acyclic continuous curve, 
the set [B] becomes the set of branch points of ikf, and hence 
the theorem contains the result of Menger that the branch 
points of an acyclic continuous curve are at most countable.! 

G. T. Whyburn has proved in his thesis a number of 
interesting theorems concerning the properties of the sub­
continua of [C], the most striking of which are the following. 

(1) If [H] denotes the set of end points]] of the continuum 
M while [T] is any countable subset of M, then every bounded 

* See C. Zarankiewicz, Sur les points de division dans les ensembles 
connexes, Fundamenta Mathematicae, vol. 9 (1927), Theorem 9, p . 140. 
This paper will hereafter be referred to as Z.F.M. 

t See Z.F.M., loc. cit., Theorem 17, p . 163. 
t See C. Kuratowski and C. Zarankiewicz, A theorem on connected sets, 

this Bulletin, vol. 33 (1927), pp. 571-575. 
§ See K. Menger, Ueber regulare Baumkurven, Mathematische Annalen, 

vol. 96 (1926), p . 574. A point p is said to be a branch point of an acyclic 
continuous curve if there exist in the curve three arcs L\, Li, and Lz such 
tha t p — L\'L2—L2'Lz=Lf L\. 

|| If M is a continuous curve, then an end point of M is defined by 
Wilder as a point P such that , whenever a is an arc from P to any point 
P' of M, then the set M— (a — P) contains no connected subset which 
contains more than one point and contains P. See W.F. , loc. cit., p . 358. 
As applied to continua in general, Whyburn defines the term end point as 
follows. The point P is said to be an end point of the continuum M provided 
it is t rue tha t if N is any subcontinuum of M which contains P, then P 
is not a limit point of any connected subset of M—N'. 
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continuum which is a subset of [C] + [i3"] + [jr] is an acyclic 
continuous curve.* 

A closely related result is that due to Zarankiewicz in which 
he shows that in a continuous curve M, if K is any con­
stituent off [C], the set of cut points of M, then K, that is, 
the set K plus its limit points, is an acyclic continuous curve. J 

(2) For every positive number e, [C] does not contain more 
than a finite number of continua of diameter greater than e. 

Zarankiewicz shows a slightly more general result in that 
he proves that you may replace "continua" by constituents 
and further shows that the constituents of diameter greater 
than e lie on an acyclic continuous curve which is a subset of 
M.% 

(3) If [C], [H] and [N] denote, respectively, the cut points, 
end points and simple closed curves in M, then M is the sum of 
these three sets. 

(4) If K is any connected subset of the set [C], then in order 
that K should be an acyclic continuous curve, it is necessary and 
sufficient that every point of K be either an end point or a cut 
point of M. 

The result of Zarankiewicz mentioned under (1) above 
shows that for the case where K is a maximal connected 
subset of [C] which is connected in the strong sense, X is 
always an acyclic continuous curve. 

* This result is Theorem 9 of W.T., loc. cit., p. 383. Whyburn 's result 
is not only for the case where M is a continuous curve but for the more 
general case where M is any plane continuum. C M . Cleveland announced 
the special case of Whyburn 's result where the subset considered is a 
maximal connected subset of the cut points [C] of a continuous curve. 
See this Bulletin, vol. 32 (1926), p. 420. 

t According to Kuratowski, the constituent of a point p in a point set 
P, is the set of all points of P which lie together with p in a closed connected 
subset of P. 

Î See C. Zarankiewicz, Sur la structure d'un ensemble de points de 
division dans les continus de Jordan, Bulletin de l'Académie Polonaise des 
Sciences et des Lettres, 1926, p . 362. This paper will be referred to as Z.P.B. 

§ See Z.P.B., loc. cit., Theorems 2 and 3. 
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(5) If K denotes the set of all cut points of the boundary of a 
complementary domain D of a continuous curve M, then the sum 
of D and K is uniformly connected im kleinen* 

(6) Suppose A and B are two points of a continuous curve M 
and [K] denotes the set of all points which separate A from B 
in M. Under these conditions, 

(i) A + [K] +B is a closed set; 

(ii) If I is any arc of M from A to B and S is any maximal 
segment of t—{A [K]B), then M contains a maximal cyclic curve 
which contains S. 

(7) If any cut point of M is a point at which some continuum 
of M is not connected im kleinen, then P is on some simple 
closed curve in M and the set of all such points is countable.,f 

(iii) Characterization of Various Types of Continuous 
Curves by Properties of their Cut Points. The first sets to be 
characterized by their cut points were simple continuous 
arcs. In 1916, Sierpinski showed that an arc is a bounded 
set, containing more than two points such that for every 
point of the set except two, the set is the sum of two closed 
sets which have only the point P in common.f In the 
Sierpinski characterization the boundedness assumption is 
essential. Moore has given another set of conditions in which 
the boundedness is not assumed but more information is 
required about the connectedness than was assumed by 
Sierpinski. Moore's theorem is to the effect that if the con­
tinuum M contains two points A and B such that (1) M—A 
and M — B are connected, (2) M — P is not connected if 
A T^PT^B, then M is a simple continuous arc from A to B. 

* The results listed above are Theorems 9,14,22,13, and 4, respectively, 
of W.T. 

t For results (6) and (7), see this Bulletin, vol. 33 (1927), p. 520. 
Î See S. Sierpinski, Varc simple comme un ensemble de points dans 

Vespace à m dimensions, Annali di Matematica, (3), vol. 26, pp. 131-150. 
As R. L. Moore pointed out, it is implicitly assumed that the two ex­
ceptional points do not cut. 
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If the boundedness is assumed then condition (1) may be 
omitted.* 

An open curve, that is, the set of all points in (1-1) con­
tinuous correspondence with the straight line, is charac­
terized as a continuum M which, whenever P is a point of the 
set, then M — P is the sum of two mutually separated con­
nected sets.f If one considers a continuum consisting entirely 
of cut points and does not impose the restriction that the sets 
into which P separates M are connected, then I have shown 
that M must be (1) a continuous curve, (2) every point P of 
M is on an open curve of M, and (3) within any circle there 
are at most a finite number of points from which more than 
two rays of an open curve depart in M.% 

In order that a bounded continuum be an acyclic continu­
ous curve it is necessary and sufficient that any one of the 
following conditions be satisfied: (a) Every subcontinuum 
should contain a non-denumerable set of points each of 
which disconnects M in the strong sense ;§ (b) If K denotes 
the set of all points of M which do not cut M, then no subset 
of K disconnects M in the weak sense;|| (c) The set of all 
non-cut points shall be totally disconnected in the strong 
sense. If 

* See R. L. Moore, Concerning simple continuous curves. Transactions 
of this Society, vol. 21 (1920), p. 335. 

t See R. L. Moore, On the foundations of plane analysis situs, Tran­
sactions of this Society, vol. 17 (1916), p. 159. 

% See my paper, Closed connected sets that are disconnected by the removal 
of a finite number of points, Proceedings of the National Academy, vol. 9 
(1923), pp. 7-12. 

§ See M.C.P. 
|| See W. T., loc. cit., Theorem 32, p. 400. This is an extension of a 

theorem of R. L. Moore, who proved it under the assumption that M is a 
continuous curve. 

1f A set of points K is said to be totally disconnected in the strong sense 
if it does not cease to be totally disconnected upon the addition of a count­
able set of points. Thus the set of irrational points on a straight line is 
totally disconnected but fails to be totally disconnected in the strong 
sense. See C. Zarankiewicz, Z.F., loc. cit., p. 18. 
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A continuous curve is said to be two-way continuous if for 
every pair of points in the set there exist at least two arcs 
joining the two points, neither of which is a subset of the 
other; it is cyclically connected if every two points of the 
set lie together on some simple closed curve of the set. Every 
cyclically connected continuous curve is two-way continu­
ous but not conversely as may be seen if we consider the set 
composed of two circles which are tangent externally. In 
order that a continuous curve may be two-way continuous, 
it is necessary and sufficient that any one of the following be 
satisfied: (a) every arc contains a non-cut point or (b) the 
set of all cut points contains no continuum. I t is true that 
the boundary of every complementary domain of a two-way 
continuous curve is itself two-way continuous.* The fact 
that a continuous curve has absolutely no cut points is a 
necessary and sufficient condition for the curve to be cyclic­
ally connected, f 

5b. Disconnection by Pairs of Points. The best example of 
a continuous curve that is separated by every pair of points 
is the simple closed curve. A bounded continuum M will 
be disconnected by the omission of two of its non-cut points, 
A and B, if and only if there exist two complementary do­
mains such that A and B are both accessible from each of 
these domains.^ I t is of interest to note that for points 
which go to make up disconnecting pairs, the following 
theorem similar in most respects to the corresponding the­
orem for cut points holds: no continuum M has a sub-
continuum K which contains an uncountable infinity of 
points such that if x and y are any two points of X, then M 
but not K is disconnected by the omission of x and y. The 
fact that the boundary of a connected domain contains a 

* See G. T. Whyburn, Two-way continuous curves, this Bulletin, vol. 32 
(1926), pp. 659-663. 

t See G. T. Whyburn, Cyclically connected continuous curves, Proceed­
ings of the National Academy, vol. 13 (1927), Theorem 1, p. 31. 

X See G. T. Whyburn, this Bulletin, vol. 33 (1927), p. 388. 
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noncountable infinity of points such that the omission of any 
pair of them disconnects the boundary is a necessary and 
sufficient condition that the boundary be a continuous 
curve.* 

Let us consider a continuum M, such that for M there 
exists a positive integer k such that (1) M Is disconnected 
by the omission of any k of its points but (2) there exists 
no set of j [j<k] points which disconnects M. Every such 
continuum is a continuous curve. We have previously dis­
cussed the case k = 1. If k = 2, then M is a simple closed curve. 
There are no sets that satisfy these conditions for &>2.f 
In my result the boundedness is not assumed. If one assumes 
boundedness then in the case where & = 2, my condition 
(1) may be omitted ; J while if we assume that M is connected 
im kleinen, then in the presence of my conditions (1) and (2) 
we may dispense with the condition that M is closed and 
still have the set necessarily a simple closed curve.§ 

5c. The Menger Curve Theory. Menger reserves the name 

"curve" for a bounded closed connected set of points K 

which has the property that for every point P of K and 

every e>0, there exists a neighborhood of diameter less 

than e about point P , whose boundary contains no con­

tinuum. As the boundary is closed and contains no continua 

(other than single points) it follows that the boundary must 

be zero-dimensional|| and the curve a one-dimensional set 

if we are dealing with compact metric spaces. In the eucli-

dean plane Menger's curves would consist of those continua 

* See G. T. Whyburn, Concerning the disconnection of continua, Funda-
menta Mathematicae, vol. 10 (1927). 

f See my paper Closed connected sets that are disconnected by the removal 
of a finite number of points, Proceedings of the National Academy, vol. 9 
(1923), pp. 7-12. 

% See R. L. Moore, Concerning simple continuous curves, loc. cit., p. 342. 
§ See R. L. Wilder, this Bulletin, vol. 33 (1927), p. 388. 
|| See P. Urysohn, loc. cit., p. 75. 
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which contain the interior of no domain.* Thus Menger's 
"curves" do not include all the sets which are included under 
the term "continuous curve," where, as is well known, a 
square and its interior may be included. 

If for a point P of the curve K, there exists for every e 
[e>0] a neighborhood about P of diameter less than e, 
whose boundary consists of a finite number of points, then 
P is called a regular point of the curve. If to a point P of 
the curve K a number n can be attached so that for every e 
[e>0] , there exists a neighborhood about P of diameter 
less than e whose boundary consists of not more than n 
points, then P is said to be of order not greater than n. A 
point is of order exactly n, if n is the smallest positive integer 
with the property that for every preassigned e we may find 
a neighborhood of diameter less than e whose boundary 
consists of exactly n points. The regular points to each of 
which we can assign no positive integer as its order (i.e. the 
points for which it is possible to find a neighborhood consist­
ing of a finite number of points for every preassigned e but 
where the number n of boundary points becomes infinite as e 
approaches zero) will be called points of continually increasing 
order. In like manner we can define the points of countable 
order and the points of the order c of the continuum. 

Menger proves that (1) the points of order higher than the 
first are everywhere dense on K and form a set Fa, which 
contains continua in every non-vacuous open subset of the 
curve, (2) the set of end points of K is either vacuous or zero-
dimensional, (3) in order that a continuum should be a 
connected im kleinen curve, it is necessary and sufficient that 
for every e[e>0] , K be the sum of a finite number of con­
tinua each of diameter less than e and such that no two have 
a continuum in common; if any two have at most a count-

* In this connection see the abst ract of a paper by R. L. Moore in 
which he shows tha t a necessary and sufficient condition t ha t a point set 
shall contain no domain is t h a t for every two points of t h e set M there 
exist a totally disconnected subset of M which separates these two points 
in M. See this Bulletin, vol. 32 (1926), p . 218. 
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able set in common, then the curve is a continuous curve 
without any points of order c* 

In a later article Menger shows that every regular curve 
contains for every point P of order n, n arcs which have P 
as one end point and are otherwise mutually exclusive; for 
each point of order continually increasing, there are a count­
able infinity of arcs ending in P , otherwise mutually exclusive, 
and such that the diameters of these arcs can be arranged in 
a sequence converging to zero. The order of a point of a 
regular curve is thus the greatest integer n such that there 
can be found in the curve an acyclic continuous curve con­
sisting of n arcs having P and only P in common.f 

An interesting complement to the result of Menger just 
mentioned is a theorem by N. E. Rut t to the effect that if 
A and B are points of the continuous curve M having the 
property that it is possible to find n arcs AXiB ( i = l , 2, 
3, • • • , n) having no points in common except A and B, 
then there exist in M a. set of points P i , P 2 , • • • , Pw, such 
that A and B are separated in M by the omission of these 
points.} 

If K is any curve which lies in a compact metric space, 
then according to Menger there is in euclidean space of 
three dimensions a continuous curve M which contains a 
subset which is in (1-1) continuous correspondence with 
K.% If the curve K is acyclic, then the set can be found in 
euclidean space of two dimensions.^ 

* The above mentioned results are contained in Menger's paper, 
Grundzüge einer Theorie der Kurven, Mathematische Annalen, vol. 95, 
pp. 277-306. 

t See Zur allgemeine Kurven Theorie, Fundamenta Mathematicae, 
vol. 10 (1927), pp. 96-115. 

Î See N. E. Rutt, this Bulletin (abstract), vol. 33 (1927), p. 415. 
§ See K. Menger, Allgemeine Raume und Cartesische RUume, Königliche 

Akademij, Amsterdam, vol. 29, pp. 476-482. 
|| See M. Wazewski, Sur les courbes de Jordan ne renfermant aucune 

courbe simple fermée, Annales de la Société Polonaise de Mathématiques, 
1924, p. 49. See also H. M. Gehman, Concerning acyclic continuous curves, 
Transactions of this Society, vol. 29 (1927), Theorem 1. 
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5d. The Set T is a Finite {or Countably Infinite) Set of 
Continua, Most of the characterizations of continuous 
curves that have been mentioned up to this time, have been 
based upon the property that certain points or sets of points 
can be connected in a manner which has been prescribed. 
However, in 1925, Moore published a characterization, the 
basic idea of which rests on the ability to separate pairs of 
points in a certain manner; the result is that a necessary and 
sufficient condition that a plane continuum be a continuous 
curve is that, for every two points A and B of the set, 
there exist a finite number of continua which separate A 
from B in the set.* According to a theorem due to W. L. 
Ayres, this disconnection can be made by a set of n arcs, 
whenever n is the number of maximal connected subsets of 
M—(A +B) which have A and B both as limit points.f 

We will recall Miss Mullikin's result to the effect that if 
Ai, A2, A'6l • • • is a countable infinity of closed sets no 
one of which disconnects its plane 5, then the sum cannot 
disconnect S. Now, if instead of 5, we substitute a proper 
subcontinuum of the plane and let the A's be subsets of 
this continuum, then our theorem is no longer true. For 
example, a circle is not disconnected by the omission of any 
one of its points but is disconnected by the omission of a 
countable infinity of them; indeed two suffice to make the 
separation. Moore, in considering an extension of Miss 
Mullikin's result, introduced the concept of semi-continuous 
collections of continua^ 

* See R. L. Moore, A characterization of a continuous curve, Fundamenta 
Mathematicae, vol. 7 (1925), p. 303. 

t That the number of such maximal connected subsets is finite follows, 
with suitable modification, from the previously quoted theorem of Ayres 
to the effect that if a subcontinuous curve N is subtracted from the con­
tinuous curve M, then M — N contains at most a finite number of maximal 
connected subsets of diameter greater than a preassigned e>0. 

| If A and B are distinct points, then let r(A,B) denote the distance 
from A to B. If A is a point not in the continuum g, then the distance 
from A to q, which we shall denote as r(A,q)t shall be the lower bound of 
all numbers r(A, Y) for all points Y of q. If p and q are continua, then the 
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Moore proves that, if in a plane S, M is a bounded con­
tinuum which does not separate S and G is a countable col­
lection of subcontinua of M, no one of which separates Mf 

then if the collection is upper semi-continuous, the sum 
cannot disconnect M. He further shows that if M is a con­
tinuous curve and two particular points A and B are not 
separated by any one of the upper semi-continuous collection 
of subcontinua G, then the set of all continua G does not 
separate A from B in M.* He next considers a plane 5 every 
point of which belongs to some continuum of the mutually 
exclusive set of continua G; then, if (1) the collection of 
continua is upper semi-continuous and (2) no one of them 
separates the plane, we may regard each continuum as a 
point and, defining region suitably, we will find that every 
axiom of his set for plane analysis situs is satisfied, if the 
space 5 is interpreted to mean the collection of continua G. 
Thus the set of elements G is topologically equivalent to 
the set of points of a plane S.f 

Whyburn takes any plane connected set M and considers 
the case where M is separated into two mutually separated 
sets Mi and M2, by the omission of n of its connected subsets 
Ah A2, • • • , An. Then he shows that (1) Mi[i = l1 2] + £-4< 
is the sum of at most n mutually separated connected sets 
and furthermore (2) if M1+A1+A2+ • • • +An is the sum 

lower distance from p to q, l(p,q), shall be the lower bound [and the upper 
distance is the upper bound] of the distances r(X,q) for all points X of p. 
A collection of continua G is said to be upper semi-continuous if whenever 
p is a continuum of the collection G and pi, p%, pz, • • • is a sequence of 
continua of G such tha t the lower distance from pn to p approaches zero 
as n becomes infinite, then the upper distance from pn to p does so also. 

* See R. L. Moore, Concerning upper semi-continuous collections of 
continua which do not separate the plane, Proceedings of the National 
Academy, vol. 10 (1924), pp. 356-360. 

f See R. L. Moore, Concerning upper semi-continuous collections of 
continua in the plane, Transactions of this Society, vol. 27 (1925). This 
concept has also been the basis of extremely interesting work by Alexan-
droff, Victoria and others. 
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of k such sets, then M2-jrAi+A2 • • • +An is the sum of 
at most n — k + 1 mutually separated connected sets.* 

There is an interesting class of connected sets, that are 
not closed, known as biconnex sets. These sets are the con­
nected sets which cannot be expressed as the sum of two 
proper subsets which are connected, thus furnishing for 
connected sets that are not closed an analogue to the inde­
composable continua in the closed connected sets. Knaster 
and Kuratowski gave an extremely interesting example of 
a biconnex set 5 , having the further property (b) that there 
is in B a point P , such that B—P contains no connected 
subsets other than single points (a connected set which, we 
might say, is "exploded" upon the removal of a single point).f 
Whether every biconnex set contains such an "explosion 
point" is still unknown;J every connected set having such 
a point is biconnex and no biconnex set can have more than 
one such point. § A study of sets H belonging to a connected 
set K and having the property that K — H contains no 
connected sets other than single points has been made by 
R. L. Wilder,|| who calls them "dispersion sets" 

6. Concluding Remarks. As is evident from the matter 
presented in this paper, our knowledge of separation proper­
ties of sets immersed in three or more dimensions is com­
paratively limited. Here is an extremely interesting and 
important field that is practically untouched. Among the 
various questions that might be considered, we will mention 
the following. 

* See G. T. Whyburn, this Bulletin, vol. 33 (1927), p. 388. 
t See Knaster and Kuratowski, Sur les ensembles connexes, Fundamenta 

Mathematicae, vol. 2 (1921), p. 241. 
$ See Fundamenta Mathematicae, vol. 3, p. 321. 
§ See my note, A theorem concerning connected sets, Fundamenta 

Mathematicae, vol. 3, pp. 238-239. 
|| See On dispersion sets of connected sets, Fundamenta Mathematicae, 

vol. 6, pp. 214-228; see also B. Knaster, Sur un problème de M. R. L. Wilder, 
in the same journal, vol. 7, pp. 191-198. 
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(a) The problem of finding approachability conditions 
which are necessary and sufficient that the separating set 
be a simple closed surface, i.e., the set of points that can be 
put into (1-1) continuous correspondence with the surface 
of a sphere. 

(b) The problem of securing necessary and sufficient 
conditions that the sum of two closed connected sets, neither 
of which separates three-space, may have a sum that sepa­
rates three-space (the conditions of Mazurkiewicz and 
Strasziewicz mentioned above are sufficient but not neces­
sary) . 

(c) The question of when a continuous (1-1) correspon­
dence T between two simple closed surfaces in three dimen­
sions, rnay be extended to a (1-1) continuous correspondence 
T of their surrounding three-spaces such that T and T are 
identical for points of the surfaces given.* 

(d) The problem of finding conditions analogous to those 
of Schoenflies that are necessary and sufficient that a con­
tinuum in three dimensions be a continuous curve. The 
conditions of Schoenflies might be characterized as external 
conditions in that they give the relation of the continuum to 
the surrounding space. The connectivity im kleinen con­
dition of Hahn, the S property of Sierpinski, the requirement 
of Wilder that every connected subset of an open subset be 
arcwise connected, and Moore's separation condition are all 
of them internal conditions and hold in any number of 
dimensions. The problem of finding external conditions is 
an open one. f 

We do not wish, however, to create the impression that 
the problems of two dimensions are by any means completely 
solved. An interesting set of problems among those still 

* Tha t this extension is not always possible has been shown by J. W. 
Alexander by means of an interesting example in the Proceedings of the 
National Academy, vol. 10 (1924). 

t For a discussion of the difficulties encountered see the article of 
R. L. Moore, Concerning the relation of a continuous curve to its complement 
in three dimensions, loc. cit. 
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unsolved is concerned with the question as to whether every 
continuum such that every subcontinuum, containing more 
than one point, is homeomorphic with the whole set must be 
a simple continuous arc and whether there are bounded 
homogeneous plane continua which are not simple closed 
curves.* A solution of the various problems still unsolved 
in two and three dimensions will open up tremendous 
possibilities for future work in this important and fascinating 
branch of mathematics. 

THE UNIVERSITY OF PENNSYLVANIA 

* That such continua, if they exist, cannot be continuous curves 
follows from the results of Mazurkiewicz, Sur les continus homogènes, 
Fundamenta Mathematica, vol. 5 (1924), pp. 137-146. A set M is said 
to be homogeneous if for every two points x and y of M there exists a (1-1) 
continuous transformation of M into itself which turns x into y. 


