EXPANSION IN SERIES OF NON-INVERTED FACTORIALS*

BY W. J. TRJITZINSKY
An expansion of the form

$$
f(z)=\sum \frac{b_{n}}{(z+1)(z+2) \cdots(z+n)}
$$

can be obtained from the consideration of Cauchy's formula

$$
2 \pi i f(z)=\int_{C} \frac{f(t) d t}{z-t}
$$

if $f(z)=0$ at infinity, together with the result \dagger
(1) $\frac{n!}{(z+1)(z+2) \cdots(z+n+1)}=\int_{0}^{1} u^{n}(1-u)^{s} d u$,
where $(1-u)^{z}$ denotes the branch reducing to unity for $u=0$. The above relations can also be used for deriving an expansion in series of non-inverted factorials. By (1) we have

$$
\frac{1}{z-t}=\int_{0}^{1}(1-u)^{z-t-1} d u
$$

Consider

$$
(1-u)^{z-t-1}=(1-u)^{z}(1-u)^{-t-1}
$$

Since

$$
(1-u)^{z}=1
$$

when $u=0$, we may write
(2) $(1-u)^{z}=1-\frac{z}{1!} u+\frac{z(z-1)}{2!} u^{2}-\cdots$

$$
+\frac{(-1)^{n}}{n!} z(z-1) \cdots(z-n+1) u^{n}+\cdots
$$

[^0]The binomial expansion (2) will be uniformly convergent for $0 \leqq u \leqq 1$ when $R(z)>0$.* Also let us introduce the condition

$$
R(-t-1)>0
$$

that is,

$$
R(t)<-1
$$

Then the expansion

$$
\begin{align*}
& (1-u)^{z-t-1}=(1-u)^{-t-1} \tag{3}\\
& +\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} u^{n}(1-u)^{-t-1} z(z-1) \cdots(z-n+1)
\end{align*}
$$

which holds for $0 \leqq u \leqq 1$, can be integrated termwise, so that we may write

$$
\begin{align*}
\frac{1}{z-t}= & \int_{0}^{1}(1-u)^{z-t-1} d u=\int_{0}^{1}(1-u)^{-t-1} d u \tag{4}\\
+ & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \cdot\left[\int_{0}^{1} u^{n}(1-u)^{-t-1} d u\right] \\
& \cdot z(z-1) \cdots(z-n+1)
\end{align*}
$$

But

$$
\int_{0}^{1} u^{n}(1-u)^{-t-1} d u=\frac{-n!}{t(1-t)(2-t) \cdots(n-t)}
$$

and hence we have
(5) $\frac{1}{z-t}=-\frac{1}{t}-\sum_{n=1}^{\infty} \frac{(-1)^{n} z(z-1)(z-2) \cdots(z-n+1)}{t(1-t)(2-t) \cdots(n-t)}$,
where $R(z)>0, R(t)<-1$.
Let $R_{n}(u)$ denote the remainder after $(n+1)$ terms of the series (2) multiplied by $(1-u)^{-t-1}$. Since (2) is uniformly convergent, given ϵ, n_{0} can be found so that for $n \geqq n_{0}$ and all $u, 0 \leqq u \leqq 1$, we have

$$
\left|R_{n}(u)\right|<\epsilon
$$

[^1]If we let $R_{n}^{\prime}(t)$ denote the remainder after $(n+1)$ terms of the series (5), we may observe that

$$
R_{n}^{\prime}(t)=\int_{0}^{1} R_{n}(u) d u
$$

and hence

$$
\left|R_{n}^{\prime}(t)\right| \leqq \int_{0}^{1}\left|R_{n}(u)\right| d u<\epsilon
$$

where ϵ is independent of t; consequently, (5) is a uniformly convergent series in t.

Let $f(z)$ be a function analytic on and outside a closed contour C situated to the left of $R(z)=-1$, and vanishing at infinity; then

$$
\begin{aligned}
& -2 \pi i f(z)=-\int_{C} \frac{f(t) d t}{z-t} \\
& \quad=\int_{C} f(t)\left[\frac{1}{t}+\sum_{n=1}^{\infty}(-1)^{n} \frac{z(z-1) \cdots(z-n+1)}{t(1-t) \cdots(n-t)}\right] d t
\end{aligned}
$$

when $R(z)>0$. Since integration termwise is justifiable, we have

$$
\begin{align*}
- & 2 \pi i f(z)=\int_{C} \frac{f(t) d t}{t}+\sum_{n=1}^{\infty}(-1)^{n} \tag{6}\\
& \cdot\left(\int_{C} \frac{f(t) d t}{t(1-t) \cdots(n-t)}\right) z(z-1) \cdots(z-n+1)
\end{align*}
$$

Hence we may state the following theorem.
Theorem I. Let $f(z)$ be a function analytic on and outside of a closed contour C situated to the left of $R(z)=-1$, and vanishing at infinity; then for all z with $R(z)>0$

$$
\begin{align*}
f(z)=b_{0}+b_{1} z+ & b_{2} z(z-1)+\cdots \tag{7}\\
& +b_{n} z(z-1) \cdots(z-n+1)+\cdots
\end{align*}
$$

where

$$
\begin{equation*}
b_{n}=\frac{(-1)^{n+1}}{2 \pi i} \int_{C} \frac{f(t) d t}{t(1-t) \cdots(n-t)} \tag{8}
\end{equation*}
$$

If we take $(1-u)^{z-t-1}$ as

$$
(1-u)^{z+k} \cdot(1-u)^{-t-1-k}
$$

where k may be complex, repeat the steps by means of which Theorem I was deduced, and replace z by $z+k$ and t by $t+k$, we find the following generalized theorem.

Theorem II. Let $f(z)$ be a function analytic on and outside of a closed contour C situated to the left of $R(z)=-R(1+k)$, and vanishing at infinity, then for all z with $R(z)>-R(k)$, we have

$$
\begin{align*}
& f(z)=b_{0}+b_{1}(z+k)+b_{2}(z+k)(z+k-1)+\cdots \tag{9}\\
& \quad+b_{n}(z+k)(z+k-1) \cdots(z+k-n+1)+\cdots
\end{align*}
$$

where

$$
\begin{equation*}
b_{n}=\frac{(-1)^{n+1}}{2 \pi i} \int_{C} \frac{f(t) d t}{(t+k)(1-t-k)(2-t-k) \cdots(n-t-k)} . \tag{10}
\end{equation*}
$$

Let U be max. $|f(t)|$ on C and l the length of C; then considering the expansion defined by Theorem I, it is observed that $t=t_{1}+i t_{2}$ has $-t_{1}>1$, since $R(t)<-1$ so that $|n-t| \geqq n-t_{1}>n+1$, and hence

$$
\frac{1}{|t(1-t) \cdots(n-t)|}<\frac{1}{(n+1)!} .
$$

Consequently

$$
\begin{equation*}
\left|b_{n}\right|<\frac{h}{(n+1)!} . \quad\left(h=\frac{U l}{2 \pi}\right) \tag{11}
\end{equation*}
$$

The University of Valparaiso

[^0]: * Presented to the Society, September 9, 1927.
 \dagger Whittaker and Watson, Modern Analysis, 3d edition, Cambridge University Press, 1920, p. 144.

[^1]: * $R(z)$ denotes the real part of z.

