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T H E CONVERGENCE OF DOUBLE FOURIER 
SERIES OF A CERTAIN TYPE* 

BY G. M. MERRIMANf 

Occasion has arisen recently, in connection with double 
Fourier series whose coefficients satisfy certain conditions, 
for the development of a necessary condition for the con
vergence of such series. The present paper obtains such a 
condition, following a generalization to two variables of a 
theorem of Fatou.J 

L e t / ( a , j3) be a periodic summable function whose double 
Fourier series, supposed for convenience to contain no terms 
independent of a or /3, is given by 

J^ 4^ ( am,n cos ma cos tip + bm,n cos ma sin n$\ 

m . i n_i ^ + cm,n sin ma cos np + dm,n sin ma sin np ) 

which will be abbreviated as 

00 00 00 00 

(1) ƒ(«,#) ~ 23 H(*>1>>c,d,a,fi)mtn = 23 23^* .* . 
1 1 1 1 

The integral o f / (a , /3), obtained by integrating (1) once with 
respect to each variable, is§ 

00 00 1 

(2) g(a,0) - 2 3 2 3 — (<*> - *> - b,a,a,P)m,n. 
i i ww 

We wish to prove the following theorem. 

* Presented to the Society, April 3, 1926. 
t National Research Fellow. 
JP.Fatou, Séries trigonométriqués et séries de Taylor, Acta Mathematica, 

vol. 30 (1906), p. 385. 
§ For the equality sign, see W. H. Young, Multiple Fourier series, 

Proceedings of the London Mathematical Society, (2), vol. 11, §§10 and 13. 
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THEOREM. If am,n, &w,n, cm,n, and dm>n are o(\/nin), and 
if A~nn and A°ù~n are o(l/m) and o(l/n) respectively* then 
a necessary condition that (l) should be convergent is the 
existence of 

(3) l i m < — - [g(a+x,P+y)+g(a-x,p-y)-g(a+x,p) 
*,y->o \2xy 

-g(a~x, P)~g(<x,P+y)-g(a,P-y) + 2g(a, P) ] \ =f{afi). 

We first prove the following lemma. 

LEMMA. If (I) is convergent and its coefficients satisfy the 
conditions of the theorem, then there exists 

(4) lim \-—\g(a+x, p+y)-g(a+x, p-y)-g(a-x, P+y) 

+ g(a-x,P-y)]f=f(afi). 

We replace the fractional expression in (4) by 

* ^ sinmx sinny 

mx ny 

and we desire to show that this expression converges to 
f {a, P) as x, y—>0. Our procedure is to divide the sum in (5) 
into four sums, each one to be considered separately: 

00 00 00 00 

(6) Z Z = Z Z + Z Z + Z Z + Z Z, 
1 1 r+1 s+ l r+1 1 1 8+1 1 1 

where r and 5 are the largest integers less than w/x and w/y 
respectively. 

(i) Consider the first sum in (6). By hypothesis we have 
that A m% n i s o[l/(nin)],tha.t is, for m> M,n> Nfmn \Am,n | <e, 
e having been previously assigned. Hence, for r>M} s>N, 

* For convenience of notation, we put A~^ '„" =Am,n, i ^ ' „ —5IL=i AZ,'n 

,0,-1 =ypm , -1 . -1 .0,0 ^ y ^ y - n J " 1 ' - 1 , 
•"m.n Z_/m=l "^w.n » ^m,» X-*l Z~wl -"w.n 
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r + i 8+i mx 

sinmx smny 

ny <-zz xy r+i ,+ i w2w2 

€ 6 6 

rs#;y (ÎT — x)(w — j ) 9 
if xy y<A. 

(ii) For the consideration of the second sum of (6) (and 
that of the third is wholly analogous to the analysis to be 
given here), we note that by the hypothesis A~^ is o ( l /w) , 
that is, m En- i^m.n J < € , for tn>M. Again, (sin ny)/(ny) 
is a monotonically decreasing function of increasing n, and 
is always positive and less than unity since ny is between 0 
and 7T. Therefore, by Abel's lemma, 

r+1 1 

< 

sin mx sin try 

mx ny 

< 
X r+l M 

< E -
r+i m 

€ € 
< — 

7T — X 3 

smmx 

mx 

if # < . l . Similarly, 

1 8+1 mx 

smmx smny 

ny 
< — 

3 
if y<A. 

(iii) We divide the fourth sum of (6) into two parts: 
x 2rfi and 

/ M 8 r N r a \ 

E I + ZL+ EE }• 
V 1 N+l M+l 1 M+lN+l / 

In the second sum, we use the fact that (sin mx)/(rnx) and 
(sin ny)/{ny) are both monotonically decreasing and are less 
in absolute value than unity, and the fact that the conver
gence of ]T}][^4m,n implies that, for M and N large enough, 

1 1 M s r N r 8 \ j 

V 1 N+l M+l 1 M+l N+l J I 

can be made less than 2e/9, whatever the values of r and s.* 

* See T. J. I'A. Bromwich, Infinite Series, §29 and §37, the latter 
containing the generalization of Abel's lemma which we have used. 
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In the first sum we note that as x, y—»0, the sum approaches 

Collecting the results of (i), (ii), and (iii), we find that 
as x, y—>0, (5) converges to ƒ (a, /3), completing the lemma. 

To prove the theorem we have only to combine (4) with 

(7) J^oi — [«(«+ x> £+?) +ë(<*+ *, P-y)+g(a- x, (3+y) x>y u I xy 

+g(a-x,p-y)+4g(a,0)-2g(a+x,P)-2g(a-x,P) 

•2g(a,0+y)-2g(a,p-y)]\=O, 

which is a generalization to two variables of a result due to 
Riemann *. 

Instead of requiring the existence of the limit (3), we can 
replace that condition by the requirement of the existence of 
(4), as is shown by our lemma. But the requirement of the 
existence of (4) immediately translates into that of the ex
istence of 

— - I I /(ct + u, (3 + v)dudv-*f{a, fi) 
*xXy *) — x *) — y 

as x, y—>0, which in turn is equivalent to requiring the 
existence of 

W T~ f f ' [/(<* + uy/3 + v)+f(a-u,l3 + v) 
4xyJ0 Jo 

+ ƒ(« + u, fi - v) + f(a — u, 0 — v)]dudv-±f(a, p) 

as x, y—>0. Hence, we have the following corollary. 
COROLLARY. If the conditions of the theorem are satisfied, 

then a necessary condition for the convergence of (1) is the 
existence of (8). 

HARVARD UNIVERSITY 

* See Hilda Geiringer, Trigonometrische Doppelreihen, Monatshefte 
für Mathematik und Physik, 1918, p. 73. 


