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ON T H E E X I S T E N C E OF LINEAR ALGEBRAS 
IN BOOLEAN ALGEBRAS* 

BY ORRIN FRINK, JR.f 

According to the definition to be found in Dickson's 
Algebras and their Arithmetics, pages 9-11, the following 
properties are characteristic of a linear algebra. 

(1) The elements of the algebra f or m an abelian group with 
respect to addition. 

(2) Multiplication is distributive with respect to addition. 
(3) The algebra has a finite basis; that is} a finite number of 

elements can be found such that every element of the algebra can 
be expressed as a linear combination of these basal units, with 
coefficients taken from the field over which the algebra is defined. 

With this definition in mind we wish to determine for 
what pairs of Boolean operations considered as the addition 
and multiplication operations the elements of a Boolean 
algebra will constitute a linear algebra. We are limited in 
our choice of an addition operation by the first property 
above to operations of the form axy+a'xy'+a'x'y+ax'y'', 
which Bernsteinf has shown to be the only Boolean abelian 
group operations. To find suitable multiplication operations 
pxy+qxy'+rx'y-\-sx'y', we seek those which are distributive 
with respect to the above. The condition that the first 
distributive law hold is found in Schroder's Algebra der 
Logik (vol. 2, p. 503) to be 

a'(pq+rs) + (ad+a'd'+bc+b'c')(p'q+r's)+d(p'q' + r's')=0, 

where a, b, c, d} and p, q, r, s are the discriminants of the 
addition and multiplication operations respectively. Here 
a = d, and b = c = a'; hence we get p'q — r's^a'q^a's — ap' 

* Presented to the Society, January 1, 1926. 
t National Research Fellow. 
% Transactions of this Society, vol. 26, p. 174. 
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= ar ' = 0, which can be written p>a>q, r>a>s. Similarly 
from the second distributive law we get p>a>r, and 
q>a>s. I t follows that q = r = a} whence it is seen that 
multiplication must be commutative. Our multiplication 
operations then must be of the form pxy+axy'+ax'y+sx'y', 
where p>a>s. Another way of writing this which involves 
only two parameters is (a + b)xy+axy'+ax'y+ab'x'y', 
where b = ps'. I t is to be noted that these operations are all 
associative, the condition being p's+(p''+s)(qr'+ q'r) = 0. 

Before trying to satisfy the condition about the finite 
basis, we will look for idempotent elements, tha t is, elements 
e not equal to a such that e2 = e. Setting y = x in the mul­
tiplication operation gives us (a + b)x+ab'x\ Equating this 
to x, we conclude tha t x is idempotent when and only when it 
is of the form (a+b)u+ab'uf, where u is arbitrary. On 
the other hand, an element n not equal to a such that w2 = a 
is nilpotent. Equating the above expression for x2 to a we see 
that all elements of the form (a-\-b')u-\-abu' are nilpotent. 
If we substitute this expression for a nilpotent element in 
the multiplication operation we also see that the product of 
one of these nilpotent elements by any element of the algebra 
is a. Of course it should be remembered that a corresponds 
to zero in our algebra. 

An important fact is that any element of the algebra can 
be expressed as the "sum" of an idempotent element and 
a nilpotent element. For we have x = (ab'+xb)@(ab-\-xb'), 
where the sign © represents our addition operation as dis­
tinguished from logical addition. This is an illustration of 
the principal theorem on algebras (Dickson, loc. cit., p. 125), 
which states tha t any associative linear algebra is the sum 
of its maximum invariant nilpotent sub-algebra and a semi-
simple algebra. The sum is here a direct sum, the cross 
products being zero. 

In our case the field over which the algebra is supposed to be 
defined is not given to us in advance, as contemplated by the 
definition of linear algebras. However, an algebra which 
contains an idempotent element must contain a sub-
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algebra which is isomorphic with the field. I t can be seen that 
a and any idempotent e form a field of 2 elements. Bernstein* 
has shown tha t the only possible fields in Boolean algebras 
are of this kind, and in fact if a field contained besides a 
and e another element/ , then since/2 is idempotent it would 
have to equal e, since a field cannot contain two idempotents. 
In tha t case, however, e@f would be nilpotent, which is like­
wise impossible in a field. Since we are limited to finite fields, 
we see tha t if our algebra is to have a finite basis it must 
itself be finite. However, any Boolean algebra contains 
finite Boolean sub-algebras, and hence may contain linear 
algebras. 

We have seen tha t our entire algebra is the direct sum of a 
zero algebra and an idempotent algebra. If either b or b' 
contains only a finite number of elements, then one of these 
two sub-algebras is finite and may have a finite basis. 
Suppose the idempotent algebra is finite and contains 
exactly 2W elements of the form ab' + kb. The product of 
two such elements ab'+xb and ab'+yb is seen to be 
ab' + (xy+axy'+ax'y)b. We see from this tha t we may set 
up a correspondence which is preserved under multiplication, 
between the elements ab' + kb of our idempotent algebra 
and the elements kb of a Boolean algebra f whose multipli­
cation operation is xy+axy'+ax'y. This Boolean algebra 
can be represented by the subsets of a set of n elements 
(eu e2y ' ' * y en), which combine under logical addition and 
multiplication. We now pick out the elements kb correspond­
ing to the unit sets (ei), (e2), • • • , (en) and call them fei6, 
k2b, - - • , knb. We then choose as basal units for the idempo­
tent algebra the elements ab'+kib (i = l, 2, • • • , n). The 
product of any two of these is a if they are distinct. Our 
field consists of the two elements a and ab'+a'b, the latter 
being the modulus of the algebra. I t is seen tha t these 
elements correspond to the null set and the universal set 

* Transactions of this Society, vol. 28 (1926), p. 654. 
t N. Wiener, Transactions of this Society, vol. 18 (1917), p. 65. 
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in the above representation by means of subsets. To see 
how an element x of the linear algebra is represented as a 
linear combination of the basal units, we merely find to 
what subset of (eu e2} • • • , en) x corresponds. The subscripts 
of the k's which appear in the linear combination are the 
same as those of the e's which appear in the subset. 

No particular difficulty presents itself in picking a set of 
basal units for the zero algebra if it is finite. The elements 
form an abelian group with respect to addition, of order 
say 2m, and we need merely select a set of m generators of 
the group for our basal units. The field, of order 2, must be 
taken outside the algebra, since the latter does not have a 
modulus. If the entire algebra is finite, in choosing a set of 
basal units for it we select the units for the sub-algebras 
separately, and again we must consider the field to be outside 
the algebra, since it has no modulus if the nilpotent part 
exists. 

We may sum up our results thus far as follows. 
The elements of a Boolean algebra form for the operations 

axy+a'xy'+a'x'y+ax'y' and (a + b)xy+ax'y+axy'+ab'x'y' 
considered as the addition and multiplication operations 
respectively a commutative associative algebra which is the direct 
sum of a zero algebra and an algebra all of whose elements except 
the zero element are idempotent. If either of these sub-algebras 
is finite, it may be represented as a linear algebra over GF(2), 
as may the entire algebra if it is finite. 

These results I consider important for Boolean algebra 
and the algebra of classes. Let a = 0 and 6 = 1, which gets 
rid of the zero algebra. Then our addition and multiplication 
operations become xy'+x'y and xy respectively. In other 
words we may substitute the operation xy'+x'y for logical 
addition in Boolean algebra. This operation, which I will 
for the time being represent with Peano by x o y, has been 
treated by many authors, but to Veblen* belongs the 
credit for introducing it as the addition operation to replace 

* Cambridge Colloquium Lectures, p. 9. 
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logical addition. In the analysis situs applications, where it 
is called "addition modulo 2," it plays a more important 
role than logical addition, and its use results in formulas 
which resemble more those of ordinary algebra. 

Two important properties of this operation are a ® a = 0, 
and a' o a = 1 for all values of a. From the first it follows that 
we may transpose terms from one side of an equation to the 
other. In virtue of the second property we can avoid entirely 
the use of the Boolean negation x'. Another important fact 
is that logical addition and addition modulo 2 are inter­
changeable when there is no overlapping between terms, 
as for example in the case of a Boolean expression in the 
completely expanded form. Thus consider a Boolean 
function of two variables ƒ(#, y)=axy + bxyf + cx'y+dxfy.f. 
Here we could substitute o for + . If we wish to avoid the 
use of the negation sign we replace xf by x o 1 and y' by y o l, 
obtaining f(x, y) =pxy o qx o ry o d> where p=*a + b+c+d, 
q = b+d, and r = c+d. This may be considered the normal 
form for a function of two variables written in terms of 
addition modulo 2. To pass from an expression of the 
latter type to one involving logical addition, we may use 
the well known rule for obtaining the discriminants of a 
Boolean expression by giving the variables the values 0 and 1. 
As a final remark it is interesting to note that although we 
may speak of the logical sum of an infinite number of ele­
ments, the sum modulo 2 of an infinite number of elements 
is in general meaningless. 
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