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THE DERIVATION OF ALGEBRAIC INVARIANTS 
BY TENSOR ALGEBRA* 

BY C. M. CRAMLETf 

1. Review of Elements of Tensor Algebra. The few simple 
laws of tensor algebra offer a basis for a very natural approach 
to the theory of algebraic invariants. In the study of 
algebraic invariants a ground form is chosen as, for example, 
the bilinear w-ary form ap9u

pv°% and the quantities ur and 
vs are transformed linearly by cogredient transformations 
such as 

(1) ür = u>qp
r. 

If the equivalent transformed form be now written âpaûfiv") 
the transformation equations for the a's are 

( 2 ) ârs = ap<Tpr
pps% 

where the p's satisfy the equations 

(3) p:qf = pfqs = V , ( = 0, r * s ; = 1, r = s), 

or what is equivalent, q8
r is equal to the cofactor of p8

r in 
the determinant \ps

r\, divided by this determinant. In 
tensor algebra the two equations of transformation (1) and 
(2) illustrate two types of tensors, that is, sets of ordered 
functions which are transformed in this linear manner. 
The set of quantities up is called a contravariant tensor of rank 
1 since the transformed quantities are each expressed linearly 
in the q's. The set of quantities ar8 with two lower indices 

* Presented to the Society, February 26, 1927, except §2. 
t National Research Fellow. 
t Repeated Greek letters are summed from 1 to n. Such a form is or­

dinarily written ap<rx
pyff. In the theory of surfaces, with the constant 

values at a point, of a given tehsor such as ar8 may be associated arbitrary 
vectors, in this case two, ur and v8. Thus when a general transformation of 
coordinates is made the vectors are transformed linearly, so the theory of 
algebraic invariants is applicable at the point. 
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illustrate a covariant tensor of rank 2. These terms covariant 
and contravariant are used differently in the classical theory 
of invariants. Here the terminology of tensor algebra will 
be used. 

The three laws of tensor algebra which follow directly from 
the defining transformation equations are as follows. 

(a) The sum of two tensors of the same kind is a tensor of 
that kind. 

(b) The (outer) product of two tensors is a tensor whose rank 
is the sum of the ranks of these tensors. For example, a^v1 is a 
mixed tensor covariant of rank 2 and contravariant of rank 1. 
In the notation Tri, the transformation law is 

Tri —T^qfpfp'. 

(c) If a covariant and contravariant index of a mixed tensor 
such as Tri are set equal and summed, as the notation Tr£ 
indicates, a tensor is obtained which has its contravariant 
and covariant rank each decreased by one. The proof consists 
in setting t = s=a in the equation of (b) above, and making 
use of (3), from which we find 

Tm« = T Tqapppa = T Tppb° = T apr
p. 

pa*r * r * a pa* r r pac 

This is the transformation equation defining a covariant 
vector. The expression a9Vu?if having no unsummed indices 
is called a scalar. The process is called contraction or inner 
multiplication and the contracted or summed indices are 
said to cancel. 

The symbol 8/ which occurs in (3) may be made a tensor 
by assigning the law of transformation to it that its indices 
suggest. Then 8«r = ôapsQp = pîql = 8/', by (3) and the new 
components are exactly equal to the old components. In 
general therefore the tensor defined by the equation 

(4) 7
r " • " ' = Bio?/* • • • S?k + 2 W ? £ . . . £ + . . . , 
* 1 • • •9k 

in which every permutation of the set r appears and the ITs 
are arbitrary scalars, possesses this property. I t has been 
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proved* moreover that there are no other invariant tensors. 
The tensor ô£;;,*, obtained from (4) by assigning B the 
values ± 1 according as the permutation on r of the 8's 
of which B is the coefficient is even or odd, since it trans­
forms by invariance will (as does Y '̂.î*) satisfy the equation 

(5) à = ö q9l • • • q8kpfil • • • pPk. 

Setting k=*n and Y\ • • • r» = l • • • n, this becomes 

à = 5 P ---P '\qS\-
»i"-sn aX"'<xk «i «n 

This is usually written as 

(6) €*t.. .,n = €,,. . .a,,^,1 ' ' ' Kn* U / I > 

and is called a covariant tensort density of weight — 1. 
This equation represents its transformation equation and 
shows these important facts: (1) it is invariant under a 
transformation of coordinates; (2) the indices are of tensor 
character, that is, indicate a certain law of transformation; 
(3) a factor A - 1 must be introduced after a transformation of 
coordinates. Similarly from (S), setting the indices s equal 
to 1 • • • n, we have 

(7) €'!•••'» = €'«-"*gpî-- -gpn
n-A, 

and e r i- r n is called a contravariant tensor density of 
weight 1. 

2. Proof of the Fundamental Theorems.% It will now be 

* P. Franklin, Philosophical Magazine, vol. 45, p. 998; C. M. Cramlet, 
this Bulletin, vol. 32 (1926), p. 212; T. Y. Thomas, Annals of Mathematics, 
vol. 27, No. 4 (1926), p. 548; C M. Cramlet, Tôhoku Mathematical Jour­
nal, vol. 28, Nos. 3, 4 (1927), p. 242. 

t See Veblen, Invariants of Quadratic Differential Forms, Cambridge 
Tract No. 24, 1927, Chapter I and Chapter II, §14. 

t The problem of §2 was discussed in a series of conferences with Pro­
fessor O. Veblen and Mr. W. Flexner. Thanks are due to Professor Veblen 
for constructive criticism which was helpful for a clear formulation of the 
problem. Mr. Flexner has worked out a proof of this problem by the use 
of the Cayley operator. The novel feature of his proof is the fact that the 
symbolic method is not used. 

file://'/qS/-
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shown that the determination of all algebraic invariants 
reduces to an exercise of the three laws of tensor algebra. 

Let us suppose that we have a system of forms determined 
by the coefficients (or covariant tensors) 
• • -, c...rh. Assuming the theorems, which depend upon 

elementary considerations on the arbitrariness of these forms, 
that only functions homogeneous in each of the tensors sepa­
rately need be considered, we know that a typical term of 
an algebraic invariant is 

Arx...Th = drx. . .rh,V • • -rt- * * * C...rk) 

and the invariant is representable as 

(8) I-K'*-»A„...n 

theK's being undetermined constants. An algebraic invariant 
must by definition be transformed according to the equation 
Ï = I-F, where / is exactly the same function of the coeffi­
cients of the transformed forms as is / of the original foims. 
Assuming further the well known theorem, which is a con­
sequence of the assumption that I is rational, that F is 
an integral power of the modulus of the transformation, 
say Aw where A = |^>J|, we may write this equation in the 
form 

(9) Kn~ •»!„..„ = K^-r*APl...PkA™. 

On the other hand, since A is a tensor, we have 

(io) K>i'~»iïPl...Pk = x » - " ' M , 1 . . . , ^ ; l
i . • • /P*. 

The right members of these equations are identically equal 
for arbitrary p's; hence k=wn. Multiplying (6) by A and 
(9) by w e's, we find, by direct substitution of this new (6) 
into this new (9), 

(11) erï...rn • • • e...rkK^'"^APl...Pk 

— ^ r , , ^ i 4 ( r i , . , f f j f c É p i . , . P f l . . . e...Pkpri - • • prjc. 
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Substituting in this 

Aai...(rk — ATl...TfcQVj • • • q<rki 

we have 

(12) T l J . . . T J f c [ 6 f l . . . r i l - . . e . . . r ^ f ^ 

- €Pl...p, • • • €...PhK'i~«*q9l • • • g„fc£ri • • • prk\=0. 

If 4̂ is an arbitrary tensor its coefficient must vanish. But 
A may be a product of tensors, in which case the terms of the 
product are interchangeable, or, one of the tensors may 
determine a p-ic in which case its indices are interchange­
able. There is no loss of generality in the invariant I de­
fined by equation (8) if the K's are assumed to have the same 
symmetry as the A's. This amounts to replacing the 
constants associated with equal terms by their average. 
We may now set coefficients of À equal to zero as in the case 
where Â is wholly arbitrary. The vanishing of these coeffi­
cients expresses the conditions that en... rn • • • € . . . n 

be an invariant tensor of the rank indicated by the indices, 
tha t is a tensor having identical components in all systems 
of coordinates. Using the theorem of §1 embodied in (4), 
we find 

Multiplying through by en--rn • • • c-rfc, r summed, we have 

(13) (nl)wK<>i' "(>* = Blepip*" 'Pn - • •e,,"^+^2€plP,..-p„. . .€---p.fc_|_ . ,# 

Since k^wn, each term contains w e's and the p's appear 
in all possible permutations. We have thus found that for 
ƒ of (8) to be an invariant it is necessary that Kpvpk be 
of the form (13). I t is obviously sufficient, for when each 
term of (13) with the B's arbitrary is multiplied by inner 
multiplication with APl...P1c the tensor indices cancel by 
inner multiplication according to tensor law (c), §1, and, 
since epi~-pn is a tensor density of weight one, each term 
gives rise to a scalar density of weight w. Those solutions 
that do not satisfy the symmetry conditions imposed on K, 
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that is, those which have two antisymmetric indices on an e 
summed with two symmetric indices on an A, will vanish 
identically. We thus have the following theorem. 

THEOREM 1. An algebraic invariant of weight w is formed 
from a given system of covariant tensors by forming by outer 
multiplication a tensor A of rank wn and multiplying this by 
inner multiplication by w e's, associating the indices of the 
e's in any manner whatever with the indices of A. Moreover 
these constitute all algebraic invariants that can be formed 
from the given covariant tensors. 

The extension to the following general theorem is im­
mediate. 

THEOREM 2. From a given system of covariant and contra-
variant tensors, a tensor A*r\"*r

l
k may be formed by outer 

and inner multiplication. In this tensor, k and I are multiples 
of n, say, k = Win, l = w2n and w=(k—l)/n, all letters repre­
senting integers. All algebraic invariants may be formed by 
multiplying by inner multiplication w\ of the contravariant 
e's, eri--rn and w2 covariant e's, en... r». A few illustrations of 
the methods here described will be given. 

3. Algebraic Invariants of a System of Linear Forms. I t 
will require n tensors such as ar to build up an nth rank tensor 
by outer multiplication. These n tensors can be represented 
by ar\8' The bar is used to indicate that the preceding r 
does not designate a tensor character. The only possible 
algebraic invariant is €pi , , , pna r i |Pl • • • arn\pn.* This is merely 
the determinant of the system of forms. For a set of vectors 
ur\* the algebraic invariant of weight — 1 is 

* The non-tensor range is alternating here. The number of alternating 
ranges associated with n elements is always even. See my paper, Applica­
tions of the determinant and permanent tensors to determinants of general 
class and allied tensor functions, American Journal, vol. 49, No. 1 (January, 
1927), p. 87. 
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4. Symmetry Tensors, When two or more indices of an 
element are summed with indices of the same S or e there 
results an algebraic invariant whose vanishing expresses a 
symmetry condition on the ground form. For example, 
if the vectors in the bilinear form apaUpv° have but two 
components (w = 2, the binary bilinear form), we may form 
the algebraic invariant h7sap<r. The vanishing of this indicates 
that ara —dar in all coordinate systems. The property 
remains true for any n but then we have a tensor that 
is not an algebraic invariant. The property of being skew 
symmetric is a property that carries over to any new form 
yet the condition is not expressible as an algebraic in­
variant but only as a tensor. This condition is expressed by 
the tensor equation 

ir£ <zP, = 0, ( < ; = oft + «;«ƒ), or arH = - a8r. 

In a new coordinate system this becomes 7r?sâp<r = 0, from 
which we find â r s =— öar. The method of obtaining other 
types of symmetry conditions for tensors with the use of the 
5 or 7 tensors is apparent.* 

5. Bilinear Forms. With the two-index tensor ar9 the 
following invariant of weight one may be formed if n is 
even (equal to 2i, say) : 

(14) « P ^ ' , , W V , • • • aPi9%. 

If we seek the invariants of weight two, the degree must 
equal n, for example 

(15) e p » - v » - x » r * ' <Wn-
The set of indices either p or a on the elements is called a 
range. If the tensor is not symmetric the indices of an e 
need not be summed with a range. There will then be many 
invariants like (15). If, however, they are summed with a 
range, the second e merely multiplies the invariant by n\. 

6. Systems of Bilinear Forms. Explicit expressions for a 

* Weyl, Space, Time, Matter, 4th edition, pp. 57, 58. 
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system of bilinear forms are readily written. Represent 
the system by 

<t>q\ = oq\p9u'tf, (q = 1,2, • • • ) • 

The following is a set of invariants of the forms : 

(16) e'*'••>»€*!• ••*»agilpi,1 • • • aqn\Pn,n. 

The q's may be distinct or repeated (see reference in §3) 
and any of the elements may be outer products of elements 
of linear forms. 

7. Trilinear Forms, With a given tensor ar8t it is only 
necessary to construct inner tensor products with the 
tensors epi-- Pn so tha t all indices on the elements are summed. 
All such are algebraic invariants and all algebraic invariants 
are thus acquired. To illustrate in detail a simple case, 
choose n = 2 and require umbral letters on an e to be asso­
ciated with indices of a range. Such invariants will also be 
invariants of the cubic, for which arst is symmetrical. Thus 
consider the invariant of degree 4 and weight 6 of the binary 
cubic 

ƒ = € a i a 3 € / 3 i / 3 » € a ^ ^ ^ ^ ^ ^ ^ 3 a a i ^ l 7 i a a 2 ô 2 7 2 a a 3 / 3 3 7 8 a a 4 / 3 4 7 4 

(17) 
= € a ^ 3 ^ ^ 3 a û l 3 l 7 l o a 3 ^ 3 . € a ^ ^ 2 ^ a a 2 / 3 2 7 2 a a ^ 4 ( y 4 . € 7 1 7 4 € 7 2 7 3 . 

The product of the first four quantities in this equation is a 
cubic determinant so the indices 71 and 73 are a permanent 
range. We may represent this product by A7iys. The whole 
theory of algebraic invariants might be translated into 
theorems regarding inner products of higher determinants. 
Further details of evaluating this invariant will be carried 
out: 

/ =ey^AyiyiAyiy2^yK 

The first three terms of this are again a determinant, hence 
the range 7273 is alternating and yields when multiplied 
innerly with ey*y*, I = 2\eyiyiAyiyzAyiy2. This invariant is 
determined by the particular manner in which the indices 
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of an € are associated with the indices of the elements ; thus 
schematically we may write 17 as 

I = (13)(13)(24)(24)(14)(23) = (13)2(24)2(14)(23). 

This expression is 2! times the invariant represented in the 
same manner by the symbolic method. 

8. Conclusion. We have here laid down a basis for a 
development of the theory of algebraic invariants which is 
applicable to tensors of any type. Transition can be made 
to the symbolic method which now becomes established 
without the use of ideal vectors. The computation seems 
particularly more simple than for the symbolic method. 

The e symbols have been used throughout and the 
number of indices on an e was always the same as the number 
of components of a vector in n- space or as the number of 
variables used to represent a point in (n — l)-space in homo­
geneous coordinates. If in any of the formulas we replace an 
e r i • • •*•»» o r e8l...8n by a ô£"£j; and allow k to be less than n, 
each algebraic invariant becomes an alternating tensor which 
has 1 distinct component for k = n and more components for 
k<n. This observation shows rather clearly the position 
algebraic invariants occupy in tensor algebra and again 
among alternating tensors. The reason that algebraic in­
variants have been of greater interest lies in the fact that 
the vanishing of an algebraic invariant gives but one con­
dition while the vanishing of any other tensor is a much 
stronger condition since it gives rise to as many conditions 
as the tensor has distinct components.* 

PRINCETON UNIVERSITY 

*F. L. Hitchcock has written a number of papers bearing upon the sub­
ject of this paper, in particular see A new method in the theory of quantics, 
Journal of Mathematics and Physics, vol. 4 (1925), p. 238. If his view point 
is adopted in this paper, the results remain true if the indices associated 
with each e and with the indices of A that are multiplied innerly with this 
c are cogredient, that is, we know that all invariants are obtained by these 
methods. Further we know that ail such upon specialization by making 
all indices cogredient become algebraic invariants. Then, however, the ques­
tion would still remain open as to whether these included all algebraic 
invariants. 


