ON CONTINUOUS CURVES IN n DIMENSIONS*

BY G. T. WHYBURN AND W. L. AYREST

If M_1 and M_2 are subsets of a connected point set M, the subset K of M is said to separate M_1 and M_2 in M if M-K is the sum of two mutually separated sets containing M_1 and M_2 respectively. R. L. Moore‡ has shown that in order that a plane continuum M be a continuous curve§ it is necessary and sufficient that for every two distinct points A and B of M there should exist a subset of M which consists of a finite number of continua and which separates A and B in M. Consider the following example: Let S_i (i=1, 2) be the set of all points (x, y, z) in three dimensions such that $x=(-1)^i$, $-1 \le y \le 1$, $0 \le z \le 1$. Let R_0 be the set of all points (x, y, z) such that $-1 \le x \le 1$, $-1 \le y \le 1$, z=0. For each integer n>0, let R_n be the set of all points (x, y, z) such that $-1 \le x \le 1$, $-1 \le y \le 1$, z=1/n. Let

$$M = S_1 + S_2 + \sum_{n=0}^{\infty} R_n.$$

It is easy to see that every two points of M may be separated by a single subcontinuum of M and yet M is not a continuous curve. Hence the condition given by Moore is not sufficient in order that a continuum in n dimensions (n>2) be a continuous curve. In this paper we give two modifications (Theorems 2 and 4) of Moore's theorem which hold in n dimensions.

^{*} Presented to the Society, October 29, 1927.

[†] National Research Fellow in Mathematics.

[‡] A characterization of a continuous curve, Fundamenta Mathematicae, vol. 7 (1925), pp. 302-307.

[§] We shall use the term continuous curve in the sense of a point set which is closed, connected and connected im kleinen. See R. L. Moore, Concerning simple continuous curves, Transactions of this Society, vol. 21 (1920), p. 347.

THEOREM 1.* If M is a continuous curve in euclidean space of n dimensions, K is a bounded subcontinuum of M and ϵ is any positive number, then there exists a set L such that (1) K+L is a continuous curve which is a subset of M, (2) every point of L is within a distance ϵ of some point of K, (3) L consists of a countable set of arcs of M, not more than a finite number of which are of diameter greater than any given positive number, (4) L+K is non-dense at every point except those points at which K fails to be non-dense.

PROOF. The set M is uniformly connected im kleinen over the set K.† Let δ_1 , δ_2 , δ_3 , \cdots be a sequence of positive numbers such that every two points of K whose distance from one another is less than δ_m can be joined by an arc of M whose diameter is less than $\epsilon/2m$. For each point p of K and each positive integer n, let C_{np} and C_{np} be hyperspheres with center p and radii ϵ/n and $\epsilon/(2n)$ respectively.‡ By the Borel theorem, for each value of n there is a finite subset of the set $[C_{np}^{\prime}]$,

$$C'_{np_{n1}}, C'_{np_{n2}}, C'_{np_{n3}}, \cdots, C'_{np_{nn'}},$$

such that every point of K is in the interior of one of the sets C'_{npni} for $1 \le i \le n'$. Since M is a continuous curve there are but a finite number,

$$M_{ni1}$$
, M_{ni2} , M_{ni3} , \cdots , M_{nim_n} ,

of the components $\{$ of $M \cdot I(C_{np_{ni}})$ that contain points in the interior of $C'_{np_{ni}}$. For each n, i and j, let $[K_{nij}]$ be the set of

^{*} This theorem contains as a special case a theorem due to H. M. Gehman, Concerning the subsets of a plane continuous curve, Annals of Mathematics, vol. 27 (1925), pp. 29-46, Theorem 3.

[†] S. Mazurkiewicz, Sur les lignes de Jordan, Fundamenta Mathematicae, vol. 1 (1920), p. 173.

[‡] If p is a point and r a positive number, the *hypersphere* with center p and radius r is the set of all points of the space whose distance from the point p is r. If S is a hypersphere, I(S) denotes the interior of S.

 $[\]S$ A connected subset of a point set H which is not a proper subset of any connected subset of H is called a *component* of H.

components of $K \cdot M_{nij} \cdot I(C'_{np_{ni}})$. By the Zermelo postulate*, there exists a set of points $[P_{nij}]$ such that each set K_{nij} contains just one point P_{nij} and each point P_{nij} belongs to just one component K_{nij} . In the set $[P_{nij}]$ there is a finite subset,

$$P_{nij}^{1}, P_{nij}^{2}, P_{nij}^{3}, \cdots, P_{nij}^{k_{1}}, \dagger$$

such that every point of $[P_{nij}]$ is within a distance δ_1 of some point of this finite set. There exists an arc α_{nij}^r $(1 \le r \le k_1 - 1)$ with end points P_{nij}^r and P_{nij}^{r+1} and lying wholly in M_{nij} . There exists a finite subset,

$$P_{nij}^{k_1+1}, P_{nij}^{k_1+2}, \cdots, P_{nij}^{k_2},$$

of the set $[P_{nij}]$ such that every point of $[P_{nij}]$ is within a distance δ_2 of some point of P^1_{nij} , P^2_{nij} , \cdots , $P^{k_2}_{nij}$. Let α^r_{nij} ($k_1 \le r \le k_2 - 1$) be an arc of M_{nij} with end points P^{r+1}_{nij} and some point of $\sum_{s=1}^{k_1} P^s_{nij}$. Continue this process indefinitely except that for t > n we place the additional condition on $\alpha^r_{nij}(k_t \le r \le k_{t+1} - 1)$ that it be of diameter less than $\epsilon/(2t)$. This can be done since any two points of K whose distance from one another is less than δ_t can be joined by an arc of M whose diameter is less than $\epsilon/(2t)$.

For each n, i and j, there is a countable set of arcs of M, α_{nij}^1 , α_{nij}^2 , α_{nij}^3 , α_{nij}^3 , \cdots , such that (a) each lies interior to a hypersphere of radius ϵ/n with a point of K as center, (b) only a finite number are of diameter greater than a given positive number, and (c) each has its end points on K. For each value of n the numbers i and j range over finite sets of values; hence the set of all arcs $[\alpha_{nij}^r]$ for a fixed value of n satisfy conditions (a), (b), and (c) above. And since all arcs $[\alpha_{nij}^r]$ for a fixed value of n are of diameter less than $2\epsilon/n$, the set of all arcs $[\alpha_{nij}^r]$ for all values of n satisfies the condi-

^{*} E. Zermelo, Untersuchung über die Grundlagen der Mengenlehre, Mathematische Annalen, vol. 65 (1908), pp. 261-281.

[†] The symbol k_1 denotes a positive integer whose value depends on n, i and j.

tion that only a finite number are of diameter greater than a given positive number. Let

$$L = \sum_{\alpha_{nij}}^{r}, \frac{1 \leq i \leq n', \quad 1 \leq j \leq m_n,}{1 \leq r < \infty, \quad 1 \leq n < \infty.}$$

We have shown that L satisfies conditions (2) and (3) of our theorem. It remains to prove that (1) and (4) are satisfied. Since only a finite number of the arcs of L are of diameter greater than a given positive number and each has a point on the closed set K, every limit point of L which does not belong to L belongs to K. Thus K+L is closed. Let P be any point of K+L. If P does not belong to K it is easy to see that K+L is connected im kleinen at P, for the interiors of hyperspheres of sufficiently small radii and center P contain no point of K and points of only a finite number of arcs of L. If P is a point of K and η is any positive number, there is a hypersphere C_{np_n} which lies entirely in the interior of the hypersphere with radius $\eta/4$ and center P and such that $I(C'_{np_{ni}})$ contains P. Let M_{nij} be the component of $M \cdot I(C_{np_{ni}})$ containing P. There exists a positive number γ such that every point of K whose distance from P is less than γ lies in M_{nij} . There exists a number $\rho > 0$ such that every point p' of L whose distance from P is less than ρ lies on an arc α_{ν} of L, one of whose points e belongs to $K \cdot M_{nij}$ and such that the subarc p'e of $\alpha_{p'}$ is of diameter less than $\eta/2$.* Let σ be the smaller of γ and ρ . Now let Q be any point of K+L whose distance from P is less than σ . If Q belongs to K it belongs to M_{nij} . By the method of

^{*} If S_{γ} and S_d denote hyperspheres with center P and radii γ and d respectively, then only a finite number of arcs of L have points in $I(S_d)$ for any $d < \gamma$ and contain no point of $I(S_{\gamma}) \cdot K$ since any such arc is at least of diameter $\gamma - d$. There is a number $d_1 > 0$ such that for $d \le d_1$ there is no such arc. Also there is a number $d_2 > 0$ such that no arc of L of diameter greater than $\eta/2$ contains a point whose distance from P is less than d_2 unless the arc contains P. On each of the finite set of arcs of L of diameter greater than $\eta/2$ that contain P there is a point q such that the subarc qP of the arc is of diameter less than $\eta/2$. Let d_3 be the smallest of the finite set of distances from P to the points q. Let ρ be the smallest of the numbers d_1 , d_2 and d_3 .

construction of L, there is a subset L' of L such that M_{nij} contains L' and $L'+K\cdot M_{nij}$ is connected. But every point of $L'+K\cdot M_{nij}$ is at a distance from P less than $\eta/2$ and $L'+K\cdot M_{nij}$ contains both P and Q. If Q is not a point of K, it lies on an arc α_Q of L which contains a point e of $K\cdot M_{nij}$ such that the subarc eQ of α_Q is of diameter less than $\eta/2$. Then $\alpha_Q+L'+K\cdot M_{nij}$ is a connected subset of L+K containing P and Q and such that every point is at a distance from P less than η . Therefore K+L is connected im kleinen at every point P.

Let P be any point of K at which K is non-dense. Then if S_1 is any hypersphere with center P, the set $I(S_1)$ contains a hypersphere S_2 such that $S_2+I(S_2)$ contains no point of K. Since only a finite number of the arcs of L are of diameter greater than a given positive number, there are only a finite number of arcs of L that have points in $I(S_2)$. Then there is a hypersphere S_3 lying in $I(S_2)$ such that $I(S_3)$ contains no point of L. Then the interior of every hypersphere S_1 with center at P contains a hypersphere S_3 such that $I(S_3)$ contains no point of K+L. Hence K+L is non-dense at the point P.

THEOREM 2. In order that a continuum M lying in euclidean space of n dimensions be a continuous curve it is necessary and sufficient that for every two distinct points A and B of M there should exist a subset of M which consists of a finite number of continuous curves and which separates A and B in M.

PROOF. The condition is necessary. Let d be the distance from A to B. Let S_1 and S_2 be hyperspheres with center A and radii d/2 and d/4 respectively. Let $H = S_1 + I(S_1) - I(S_2)$. The set $M \cdot H$ is closed and it is easy to see that there is at least one component of $M \cdot H$ containing points on both S_1 and S_2 . As M is a continuous curve there cannot be more than a finite number of such components. Let K_1 , K_2 , K_3 , \cdots , K_m denote the set of all components of $M \cdot H$ which contain a point on S_1 and a point on S_2 . By Theorem 1, for each i, $1 \le i \le m$, there is a continuous curve M_i which contains

 K_i , is a subset of M and such that every point of M_i is within a distance d/8 of some point of K_i . Suppose that A and B lie in a connected subset of $M - \sum_{i=1}^m M_i$. Then there is an arc with end points A and B lying in $M - \sum_{i=1}^m M_i$.* This arc contains a subarc α which is a subset of H and has one end point on S_1 and the other on S_2 . Then α must belong to some set K_i and thus to $\sum_{i=1}^m M_i$. But this is impossible, for $M - \sum_{i=1}^m M_i$ contains α . Therefore $\sum_{i=1}^m M_i$ separates A and B in M.

The condition is sufficient. If M is not a continuous curve there exist two concentric hyperspheres S_1 and S_2 and an infinite set of subcontinua M_{∞} , M_1 , M_2 , M_3 , \cdots of M satisfying the conditions of the Moore-Wilder lemma.† Let S_3 and S_4 be distinct hyperspheres concentric with S_1 and lying between S_1 and S_2 . Each continuum M_i contains a subcontinuum K_i which contains a point P_i on S_3 and a point Q_i on S_4 and is a subset of the set G consisting of S_3 and S_4 and all points which lie between S_3 and S_4 . There exists a sequence of integers n_1, n_2, \cdots , such that $[P_{n_i}]$ has a sequential limit point B. By hypothesis there exists a finite set of continuous curves C_1 , C_2 , C_3 , \cdots , C_m which are subsets of M and separate A and B in M.

CASE I. Suppose infinitely many of the continua K_{n_i} contain a point of $\sum_{k=1}^{m} C_k$. As there are but a finite number of the curves C_k , one curve $C_{k'}$ must contain a point p_{n_i} of K_{n_i} for infinitely many values of i. The set $[p_{n_i}]$ has a limit point P, which must belong to M_{∞} and to G. Let ϵ be a positive number such that no point of S_1+S_2 is within a distance ϵ of P. As $C_{k'}$ is a continuous curve, the point P

^{*} R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol. 15 (1922), pp. 254-260. Moore's theorem is stated for two dimensions, but the extension to n dimensions is obvious.

[†] R. L. Moore, Report on continuous curves from the viewpoint of analysis situs, this Bulletin, vol. 29 (1923), p. 296; R. L. Wilder, Concerning continuous curves, Fundamenta Mathematicae, vol. 7 (1925), p. 371. The lemma holds equally well for n dimensions and for unbounded continua.

belongs to $C_{k'}$ and there is a number $\delta_{\epsilon} > 0$ such that any point of $C_{k'}$ whose distance from P is less than δ_{ϵ} can be joined to P by an arc of $C_{k'}$ of diameter less than ϵ . There is a point p_{n_r} of $[p_{n_i}]$ whose distance from P is less than δ_{ϵ} . Let α denote an arc of $C_{k'}$ with end points P and p_{n_r} and of diameter less than ϵ . The arc α contains a point of M_{n_r} and a point of M_{∞} and lies entirely between S_1 and S_2 . By the Moore-Wilder lemma, M_{n_r} is a component of the common part of M and the set composed of S_1 and S_2 and all points lying between S_1 and S_2 . Hence M_{n_r} contains the arc α . But this contradicts the condition of the lemma that M_{n_r} and M_{∞} have no common points.

CASE II. Suppose only a finite number of the continua K_{n_i} contain points of $\sum_{k=1}^m C_k$. The set $M - \sum_1^m C_k$ is the sum of two mutually separated sets M_A and M_B containing A and B respectively. Every set K_{n_i} which contains no point of $\sum_1^m C_k$ lies wholly in M_A or wholly in M_B . There is an integer j such that for $i \ge j$, the continuum K_{n_i} contains no point of $\sum_{1}^m C_k$. Both A and B are limit points of the set $\sum_{i=j}^\infty K_{n_i}$. Either infinitely many of the sets K_{n_i} ($i \ge j$) belong to M_A or infinitely many belong to M_B . If the first holds then B is a limit point of M_A ; under the second possibility the point A is a limit point of the set M_B . In either possibility we have a contradiction since M_A and M_B are mutually separated.

The assumption that M is not a continuous curve leads to a contradiction with the assumed condition in either case. Therefore the condition is sufficient.

It is to be noticed that in the proof of the necessity of the condition in Theorem 2 we showed that the separating continuous curves were bounded. Hence we have the following corollary and theorem.

COROLLARY. If A and B are points of a continuous curve M lying in euclidean space of n dimensions, there exists a subset of M which consists of a finite number of bounded continuous curves and which separates A and B in M.

THEOREM 3. If K_1 and K_2 are any two mutually exclusive and closed point sets, one of which is bounded, then K_1 lies wholly in a finite number of the complementary domains of K_2 .

PROOF. Suppose the contrary is true. Then there exists an infinite sequence D_1 , D_2 , D_3 , \cdots of distinct complementary domains of K_2 each of which contains at least one point of K_1 . For each positive integer i, let P_i denote a point of K_1 belonging to D_i . Let H denote the set of points $P_1+P_2+P_3+\cdots$. By hypothesis either K_1 or K_2 is bounded. If K_1 is bounded, then H is bounded because H is a subset of K_1 ; and if K_2 is bounded, then since H contains at most one point in the unbounded complementary domain of K_2 , it readily follows that H is bounded. Hence, in any case, H is bounded; and since it is infinite, it must have at least one limit point P. Since K_1 is closed and contains H, it must contain the point P; and since K_1 and K_2 are mutually exclusive, P must belong to some complementary domain D of K_2 . Clearly this is impossible, since P is a limit point of H, and not more than one point of H can belong to D. Thus the supposition that Theorem 3 is not true leads to a contradiction.

THEOREM 4. In order that a continuum M in a euclidean space E_n of n dimensions should be a continuous curve it is necessary and sufficient that every two mutually exclusive, closed, and bounded subsets of M should be separated in M by the sum of a finite number of subcontinua of M.

PROOF.* The condition is sufficient. For suppose a continuum M satisfies the condition but is not a continuous curve. Then by the Moore-Wilder lemma† it follows that there exist two different concentric hyperspheres C_1 and C_2 and a countable infinity of mutually exclusive subcontinua of M: W, M_1 , M_2 , M_3 , \cdots such that (1) if D denotes the

^{*} Compare this proof with that given by R. L. Moore for Theorem 1 of his paper, A characterization of a continuous curve, loc. cit.

[†] See reference to the Moore-Wilder lemma above.

n-dimensional domain whose boundary is $C_1 + C_2$, then each of these continua contains at least one point on each of the hyperspheres C_1 and C_2 , and each of them, save possibly W, is a component of the set of points $M \cdot (D + C_1 + C_2)$, and (2) W is the sequential limiting set of the sequence of continua M_1 , M_2 , M_3 , \cdots . Let A and B denote the sets of points $W \cdot C_1$ and $W \cdot C_2$ respectively and, for each positive integer i, let a_i denote the set of points $M_i \cdot C_1$ and b_i the set $M_i \cdot C_2$. Since A and B are mutually exclusive, closed, and bounded subsets of M, by hypothesis there exists a subset L of M such that (1) M-L is the sum of two mutually separated point sets M_a and M_b containing A and B respectively, and (2) L is the sum of a finite number of continua $L_1, L_2, L_3, \cdots, L_m$. Since neither A nor B has a point in common with L, and A contains no point of M_b and B contains no point of M_a , therefore there exist open sets C_a and C_b , containing A and B respectively, such that C_a contains no point of $L+M_b$ and C_b contains no point of $L+M_a$. There exists an integer δ such that, for every j greater than δ , the point set a_i lies wholly in C_a and the point set b_i lies wholly in C_b . Thus, for every j greater than δ , M_i contains a point of M_a and also a point of M_b . But M_i is a subcontinuum of M, and every subcontinuum of M which contains a point of each of the sets M_a and M_b must contain at least one point of L. Hence, for every j greater than δ , M_i contains a point of L, and therefore of some one of the sets L_1, L_2, \dots, L_m . It follows that there exists an integer g and an infinite sequence of distinct positive integers t_1, t_2, t_3, \cdots such that, for every j, L_g contains at least one point in common with M_{t_i} . Since, for every j, the subcontinuum L_g of M contains a point of M_{t_i} and a point of $M_{t_{j+1}}$ it follows by a lemma of R. L. Moore's* that L_a must contain a point either of a_{t_j} or of b_{t_j} . Thus there exists an infinite sequence of distinct integers j_1, j_2, j_3, \cdots , such that either L_g has a point in common with each point set

^{*} A characterization of a continuous curve, loc. cit., Lemma 2.

of the sequence a_{j_1} , a_{j_2} , a_{j_3} , \cdots , or it has at least one point in common with each point set of the sequence b_{j_1} , b_{j_2} , b_{j_3} , \cdots . In the first case it readily follows that A contains at least one point of L_g , and in the second case that B contains at least one point of L_g . But A+B is a subset of M-L. Thus the supposition that M is not a continuous curve leads to a contradiction.

The condition is also necessary. For let M be any continuous curve in E_n , and let K_1 and K_2 be any two mutually exclusive, closed, and bounded subsets of M. It follows by Theorem 3 that there exists a finite number D_1 , D_2 , D_3 , \cdots , D_m of the complementary domains of K_2 whose sum contains the point set K_1 . For each positive integer $i \leq m$, let B_i denote the boundary of D_i , let H_i be the set of points common to K_1 and D_i , and let $4d_i$ be the minimum distance between the closed sets of points H_i and B_i . For each point Pof $H_i + B_i$, let C_p denote a hypersphere with P as center and radius d_i , and let G'_i be the collection of all the hyperspheres $[C_p]$ for all points P of H_i+B_i . Since K_1+K_2 , and hence also H_i+B_i , is bounded, then by the Borel theorem there exists a finite subcollection G_i of the hyperspheres of G_i' such that $H_i + B_i$ is a subset of the sum I_i of the interiors of the collection G_i . Let T_i denote the point set $(D_i + B_i)$ $-I_{i}\cdot(D_{i}+B_{i})$. Then T_{i} is closed. Let F_{i} denote the sum of all the hyperspheres (not including their interiors) of the collection G_i which enclose at least one point of H_i , and let N_i be the sum of all those which enclose at least one point of B_i . Since the least distance between H_i and B_i is $4d_i$, and since the radius of each hypersphere of G_i is d_i , it follows that F_i and N_i are mutually exclusive closed sets whose least distance apart is $>d_i$. Let Q_i denote the collection of all those maximal connected subsets of M which lie wholly in T_i and contain at least one point of each of the sets F_i and N_i . Each element of Q_i is a continuum, and since M is a continuous curve, it follows by the Moore-Wilder lemma that Q_i has just a finite number of elements. Hence Q_i is a finite collection of mutually exclusive continua L_{1i} , L_{2i} , L_{3i} , \cdots , L_{n_ii} which belong to M.

Now let L denote the point set $\sum_{i=1}^{m} \sum_{j=1}^{n_i} L_{ji}$. L is the sum of a finite number of mutually exclusive subcontinua of M. Let M_a denote the sum of all those components of M-L which contain at least one point of A, and let M_b denote the point set $M-(M_a+L)$. No point of B belongs to M_a . For if a point X of B belonged to M_a , then* X could be joined in M to some point Y of A by an arc which contains no point of L, and this arc would contain a subarc t which is a subset of some set T_i and which has its end points on F_i and N_i respectively; and the arc t would necessarily be a subset of some continuum of the collection Q_i , contrary to the fact that t contains no point of L. Therefore B must be a subset of M_b . Since M is connected im kleinen and L is closed, it readily follows that M_a and M_b are mutually separated. Hence M-L is the sum of two mutually separated sets M_a and M_b containing A and B respectively, and therefore L separates A and B in M.

THEOREM 5. In order that a continuum M in a space of n dimensions should be a Menger regular curve† it is necessary and sufficient that every two points of M should be separated in M by some finite subset of M.

PROOF. The condition is sufficient. Let P be any point of M and ϵ any positive number. Let C_1 and C_2 be two distinct hyperspheres each of which has P as center and is of radius less than $\epsilon/4$. Let D denote the domain between C_1 and C_2 , and let K denote the set of points common to $D+C_1+C_2$ and to M. Then K is closed. Now by Theorem 2 it follows

^{*} R. L. Moore, Concerning continuous curves in the plane, loc. cit.

[†] A continuum M is said to be a Menger regular curve provided that for each point P of M and each positive number ϵ there exists an open subset T of M of diameter less than ϵ which contains P and whose M-boundary is finite. The M-boundary of an open subset T of a continuum M is the set of all those points of M-T that are limit points of T. See K. Menger, Grundzüge einer Theorie der Kurven, Mathematische Annalen, vol. 95 (1925–1926), pp. 276–306.

that M is a continuous curve. By hypothesis, for each point X of K there exists a finite subset N_x of M which separates X and P in M. For each such point X, the maximal connected subset H_x of $M-N_x$ which contains X is an open subset of M which does not contain P and whose M-boundary is finite (a subset of N_x). Let G_0 denote the collection of sets $[H_x]$ for all points X of K. Since K is closed and bounded, then by the Borel theorem the collection G_0 contains a finite subcollection G which covers K. Let R denote the sum of all the point sets of the collection G. Then K is a subset of R, and R is an open subset of M. Furthermore B, the M-boundary of R, is finite, for R is the sum of a finite number of the sets H_x . Now, supposing that C_1 is within C_2 , let A denote the set of all those points of B which lie on or within C_1 . Now R+A does not contain P, for Pbelongs to no set H_x and to no N_x . Let T denote the maximal connected subset of M-A which contains P. It is readily seen that T must lie within C_1 . Hence the diameter of T is less than ϵ . The M-boundary of T is finite, because it is a subset of A. Then, since T is an open subset of M, it follows that P is a regular point of M and that M is a Menger regular curve.

That the condition is necessary follows at once from the definition of a Menger regular curve.

THEOREM 6. If every two points of a continuum M are separated in M by some finite subset of M, then every two mutually exclusive, closed, and bounded subsets of M are separated in M by some finite subset of M.

PROOF. It follows by Theorem 5 that M is a Menger regular curve. Then by a theorem of Menger's,* it follows that every two mutually exclusive, closed, and bounded subsets of M can be separated in M by some finite subset of M.

THE UNIVERSITY OF TEXAS

^{*} Loc. cit., Theorem 12.