1928.] CURVES IN 7 DIMENSIONS 349

ON CONTINUOUS CURVES IN # DIMENSIONS*
BY G. T. WHYBURN AND W. L. AYRES}

If M; and M. are subsets of a connected point set M, the
subset K of M is said to separate M, and M,in M if M —K is
the sum of two mutually separated sets containing M, and M,
respectively. R. L. Mooref has shown that in order that a
plane continuum M be a continuous curve§ it is necessary
and sufficient that for every two distinct points 4 and B of M
there should exist a subset of M which consists of a finite
number of continua and which separates 4 and B in M.
Consider the following example: Let S; (¢=1, 2) be the set of
all points (x, v, 2) in three dimensions such that x=(—1)%,
—1=<y=<1,0=z=1. Let R, be the set of all points (x, y, 2)
such that —1=x=<1, —1=y=<1,2=0. For each integer » >0,
let R, be the set of all points (x, ¥, 2) such that —1=x=<1,
—1=y=<1,2=1/n. Let

M =S+ S:+ 2R..

n=0

It is easy to see that every two points of M may be separated
by a single subcontinuum of M and yet M is not a contin-
uous curve. Hence the condition given by Moore is not
sufficient in order that a continuum in # dimensions (n#>2)
be a continuous curve. In this paper we give two modifica-
tions (Theorems 2 and 4) of Moore’s theorem which hold in
n dimensions.

* Presented to the Society, October 29, 1927.

t National Research Fellow in Mathematics.

1 A characterization of a continuous curve, Fundamenta Mathematicae,
vol. 7 (1925), pp. 302-307.

§ We shall use the term continuous curve in the sense of a point set which
is closed, connected and connected im kleinen. See R. L. Moore, Concerning
simple continuous curves, Transactions of this Society, vol. 21 (1920), p. 347.
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THEOREM 1.* If M is a continuous curve in euclidean space
of n dimensions, K is a bounded subcontinuum of M and e
is any positive number, then there exists a set L such that
(1) K+L is a continuous curve which is a subset of M, (2)
every point of L is within a distance € of some point of K, (3)
L consists of a countable set of arcs of M, not more than a
finite number of which are of diameter greater than any given
positive number, (4) L+ K is non-dense at every point except
those points at which K fails to be non-dense.

Proor. The set M is uniformly connected im kleinen over
the set K.t Let 8;, 8, 85 - - - be a sequence of positive
numbers such that every two points of K whose distance
from one another is less than §,, can be joined by an arc of M
whose diameter is less than e¢/2m. For each point p of K
and each positive integer #, let C,, and C,;, be hyperspheres
with center p and radii ¢/# and ¢/(2n) respectively.f By the
Borel theorem, for each value of # there is a finite subset of
the set [C/,),

’ ’ ' ’
C”Pnl’ Cﬂlinzy Cnpns’ ) Cﬂ?n»'y

such that every point of K is in the interior of one of the sets
woni fOr 1 =2=n’. Since M is a continuous curve there are
but a finite number,

Mn‘ily MniZ’ Mni3, DY Mnim,.,

of the components§ of M -I(Cnp,;) that contain points in the
interior of C,,',,,,,.. For each #, ¢ and j, let [K,i;] be the set of

* This theorem contains as aspecial caseatheoremduetoH. M.Gehman,
Concerning the subsets of a plane continuous curve, Annals of Mathematics,
vol. 27 (1925), pp. 29-46, Theorem 3.

t S. Mazurkiewicz, Sur les lignes de Jordan, Fundamenta Mathemati-
cae, vol. 1 (1920), p. 173.

1 If p is a point and 7 a positive number, the hypersphere with center
p and radius 7 is the set of all points of the space whose distance from the
point p is r. If Sis a hypersphere, I(S) denotes the interior of S.

§ A connected subset of a point set H which is not a proper subset of
any connected subset of H is called a component of H.
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components of K- M,;-I(Cnp,). By the Zermelo postulate*,
there exists a set of points [P,i;] such that each set K,
contains just one point P,;; and each point P,;; belongs to
just one component K,;;. In the set [P,i;] there is a finite
subset,
P:n'i, Piii: P:iiy Tty P::MT

such that every point of [P,;;] is within a distance 8; of some
point of this finite set. There exists an arc o;; (1=S7r=<k;—1)
with end points P};; and P:,*{jl and lying wholly in M.
There exists a finite subset,

P:"‘{:_'l, Pii—?) ) P,:l“;iy

of the set [P,;;] such that every point of [P,;;] is within a
distance 8. of some point of Pl P%;, ---, Pk, Let ol
(ki=r=<ks—1) be an arc of M,;; with end points P:,T,-l and
some point of Zf;l P,;;. Continue this process indefinitely
except that for /># we place the additional condition on
anii(ki <7 <k,1—1) that it be of diameter less than e/(2¢).
This can be done since any two points of K whose distance
from one another is less than §, can be joined by an arcof M
whose diameter is less than ¢/(2f).

For each #n,7 and j, there is a countable szt of arcs of M,
Clnijy Onijy Qoijy - - -, such that (a) each lies interior to a
hypersphere of radius ¢/# with a point of K as center, (b)
only a finite number are of diameter greater than a given posi-
tive number, and (c) each has its end points on K. For each
value of # the numbers 7z and j range over finite sets of
values; hence the set of all arcs [ay;;] for a fixed value of »
satisfy conditions (a), (b), and (c) above. And since all arcs
[afi;] for a fixed value of # are of diameter less than 2¢/7,
the set of all arcs [an:;] for all values of # satisfies the condi-

* E. Zermelo, Untersuchung iber die Grundlagen der Mengenlehre,
Mathematische Annalen, vol. 65 (1908), pp. 261-281.

t The symbol %, denotes a positive integer whose value depends on #,
% and j.
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tion that only a finite number are of diameter greater than a
given positive number. Let

121+ 157 = m,,
L=Za:u'i»1 ’ ’

SEr<o, 1=sn<»,

We have shown that L satisfies conditions (2) and (3)
of our theorem. It remains to prove that (1) and (4) are
satisfied. Since only a finite number of the arcs of L are of
diameter greater than a given positive number and each has
a point on the closed set K, every limit point of L which
does not belong to L belongs to K. Thus K+ L is closed. Let
P be any point of K+ L. If P does not belong to K it is
easy to see that K+L is connected im kleinen at P, for the
interiors of hyperspheres of sufficiently small radii and center
P contain no point of K and points of only a finite number of
arcs of L. If P is a point of K and 7 is any positive number,
there is a hypersphere C,,,; which lies entirely in the interior
of the hypersphere with radius 7/4 and center P and such
that I(C,,,) contains P. Let M,;; be the component of
M-I(Cnp,;) containing P. There exists a positive number
v such that every point of K whose distance from P is less
than v lies in M,;;. There exists a number p>0 such that
every point p’ of L whose distance from P is less than p
lies on an arc a, of L, one of whose points e belongs to
K- M,;; and such that the subarc p’e of @, is of diameter less
than 7/2.* Let o be the smaller of ¥ and p. Now let Q be
any point of K+ L whose distance from P is less than o.
If Q belongs to K it belongs to M,;;. By the method of

* If Sy and Sq denote hyperspheres with center P and radii v and d
respectively, then only a finite number of arcs of L have points in I(Sq)
for any d <y and contain no point of I(Sy):K since any such arc is at
least of diameter y—d. There is a number d; >0 such that for d <d, there
is no such arc. Also there is a number ds >0 such that no arc of L of di-
ameter greater than /2 contains a point whose distance from P is less
than d, unless the arc contains P. On each of the finite set of arcs of L of
diameter greater than 5/2 that contain P there is a point ¢ such that the
subarc ¢P of the arc is of diameter less than /2. Let d; be the smallest
of the finite set of distances from P to the points g. Let p be the smallest
of the numbers d,, d; and ds.
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construction of L, there is a subset L’ of L such that M,;;
contains L’ and L'+ K- M,;; is connected. But every point
of L'+K- M,;; is at a distance from P less than 7/2 and
L'+ K- M,;; contains both P and Q. If Q is not a point of K,
it lies on an arc aq of L which contains a point ¢ of K- M,;,
such that the subarc eQ of ag is of diameter less than 7/2.
Then ag+L'+K - M,;; is a connected subset of L+K
containing P and Q and such that every point is at a distance
from P less than #. Therefore K+ L is connected im kleinen
at every point P.

Let P be any point of K at which K is non-dense. Then if
S is any hypersphere with center P, the set I(S;) contains a
hypersphere S; such that S:+I(S,) contains no point of K.
Since only a finite number of the arcs of L are of diameter
greater than a given positive number, there are only a
finite number of arcs of L that have points in I(S;). Then
there is a hypersphere S; lying in I(S;) such that I(Sj)
contains no point of L. Then the interior of every hyper-
sphere S; with center at P contains a hypersphere S; such
that I(S3) contains no point of K+L. Hence K+L is
non-dense at the point P.

THEOREM 2. In order that a continuum M lying in euclidean
space of n dimensions be a continuous curve it is necessary and
sufficient that for every two distinct points A and B of M there
should exist a subset of M which consists of a finite number of
continuous curves and which separates A and B in M.

Proor. The condition is necessary. Let d be the distance
from A to B. Let S; and S; be hyperspheres with center 4
and radii /2 and d/4 respectively. Let H=S;4+1(S;) —I(S:).
The set M- H is c¢losed and it is easy to see that there is at
least one component of M-H containing points on both S
and S.. As M is a continuous curve there cannot be more
than a finite number of such components. Let K;, K,
K, - -+, K, denote the set of all components of M -H which
contain a point on S; and a point on S;. By Theorem 1, for
each 7,1 <7 <m, thereis a continuous curve M; which contains
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K, is a subset of M and such that every point of M, is within
a distance d/8 of some point of K;. Suppose that 4 and B lie
in a connected subset of M — Y[, M;. Then there is an arc
with end points 4 and B lying in M — Y.y M.* This arc
contains a subarc a which is a subset of H and has one
end point on S; and the other on S,. Then a must belong to
some set K; and thus to Y.;—; M,;. But this is impossible, for
M— ¥, M; contains a. Therefore Y [, M; separates 4
and B in M.

The condition is sufficient. If M is not a continuous curve
there exist two concentric hyperspheres S; and S; and an
infinite set of subcontinua M., M;, M, M ---of M
satisfying the conditions of the Moore-Wilder lemma.}
Let S3; and S4 be distinct hyperspheres concentric with S;
and lying between S; and S.. Each continuum M; contains a
subcontinuum K; which contains a point P; on S; and a point
Qi on S, and is a subset of the set G consisting of S; and S,
and all points which lie between S; and Ss. There exists a
sequence of integers 7y, %z, - - -, such that [P,;] has a sequen-
tial limit point 4 and [Q,;] has a sequential limit point B.
By hypothesis there exists a finite set of continuous curves
Cy, Cy, Cs, - -+, C»n which are subsets of M and separate 4
and B in M.

CasE 1. Suppose infinitely many of the continua K,
contain a point of Y ;—;Cs. As there are but a finite number
of the curves Ci, one curve C,» must contain a point p,; of
K., for infinitely many values of 7. The set [p,;] has a limit
point P, which must belong to M, and to G. Let € be a
positive number such that no point of S;+.S; is within a
distance € of P. As Cy is a continuous curve, the point P

* R.L. Moore, Concerning continuous curves in the plane, Mathematische
Zeitschrift, vol. 15 (1922), pp. 254-260. Moore's theorem is stated for
two dimensions, but the extension to # dimensions is obvious.

t R. L. Moore, Report on continuous curves from the viewpoint of analysis
situs, this Bulletin, vol. 29 (1923), p. 296; R. L. Wilder, Concerning con-
tinuous curves, Fundamenta Mathematicae, vol. 7 (1925), p. 371. The
lemma holds equally well for # dimensions and for unbounded continua.
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belongs to Ci and there is a number 6.>0 such that any
point of Ci whose distance from P is less than 8. can be
joined to P by an arc of Cy of diameter less than e. There
is a point p,, of [p.;] whose distance from P is less than ..
Let « denote an arc of Cy with end points P and p,, and of
diameter less than e. The arc « contains a point of M,, and
a point of M, and lies entirely between S; and S;. By the
Moore-Wilder lemma, M,, is a component of the common
part of M and the set composed of S; and S; and all points
lying between S; and S;. Hence M,, contains the arc a.
But this contradicts the condition of the lemma that M,,
and M, have no common points.

Case II. Suppose only a finite number of the continua
K,, contain points of Y ;_,Ci. The set M —> ]'Cy is the
sum of two mutually separated sets M4 and Mp containing
A and B respectively. Every set K,, which contains no
point of 3 T'C; lies wholly in M4 or wholly in Mp. There
is an integer j such that for 72=j, the continuum K, contains
no point of Y} 7'Cy. Both A and B are limit points of the
set 3 ;~;K.;. Either infinitely many of the sets K., (¢2j)
belong to M4 or infinitely many belong to Mp. If the first
holds then B is a limit point of M4; under the second possi-
bility the point 4 is a limit point of the set M. In either
possibility we have a contradiction since M4 and Mp are
mutually separated.

The assumption that M is not a continuous curve leads
to a contradiction with the assumed condition in either case.
Therefore the condition is sufficient.

It is to be noticed that in the proof of the necessity of the
condition in Theorem 2 we showed that the separating
continuous curves were bounded. Hence we have the
following corollary and theorem.

CoROLLARY. If A and B are poinis of a continuous curve
M lying in euclidean space of n dimensions, there exists a
subset of M which consists of a finite number of bounded
continuous curves and which separates A and B in M.
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THEOREM 3. If K; and K, are any two mutually exclusive
and closed point sets, one of which is bounded, then K, lies
wholly in a finite number of the complementary domains of K,.

ProoF. Suppose the contrary is true. Then there exists
an infinite sequence D;, D, Ds, - - - of distinct comple-
mentary domains of K, each of which contains at least one
point of K;. For each positive integer ¢, let P; denote a
point of K, belonging to D;. Let H denote the set of points
Py+Py+P3+ - --. By hypothesis either K; or K; is
bounded. If K, is bounded, then H is bounded because H
is a subset of K;; and if K, is bounded, then since H contains
at most one point in the unbounded complementary domain
of K, it readily follows that H is bounded. Hence, in any
case, H is bounded; and since it is infinite, it must have at
least one limit point P. Since K; is closed and contains H,
it must contain the point P; and since K; and K, are
mutually exclusive, P must belong to some complemen-
tary domain D of K,. Clearly this is impossible, since P
is a limit point of H, and not more than one point of H can
belong to D. Thus the supposition that Theorem 3 is not
true leads to a contradiction.

THEOREM 4. In order that a continuum M in a euclidean
space E, of n dimensions should be a continuous curve it is
necessary and sufficient that every two mutually exclusive, closed,
and bounded subsets of M should be separated in M by the sum
of a finite number of subcontinua of M.

Proor.* The condition is sufficient. For suppose a con-
tinuum M satisfies the condition but is not a continuous
curve. Then by the Moore-Wilder lemmat it follows that
there exist two different concentric hyperspheres C; and C;
and a countable infinity of mutually exclusive subcontinua
of M: W, My, M., M3, - - - such that (1) if D denotes the

* Compare this proof with that given by R. L. Moore for Theorem 1
of his paper, 4 characterization of a continuous curve, loc. cit.
t See reference to the Moore-Wilder lemma above.
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n-dimensional domain whose boundary is C;+ C:, then each
of these continua contains at least one point on each of the
hyperspheres C; and C,, and each of them, save possibly W,
is a component of the set of points M- (D4 Ci+C:), and
(2) W is the sequential limiting set of the sequence of con-
tinua M,, M, Ms, - - - . Let A and B denote the sets of points
W-Cy and W-C, respectively and, for each positive inte-
ger 7, let a; denote the set of points M;-C; and b; the set
M; C,. Since 4 and B are mutually exclusive, closed, and
bounded subsets of M, by hypothesis there exists a sub-
set L of M such that (1) M —L is the sum of two mutually
separated point sets M, and M; containing 4 and B respec-
tively, and (2) L is the sum of a finite number of continua
Ly, Ly, L3, - -+, Lyn. Since neither 4 nor B has a point in
common with L, and 4 contains no point of M; and B con-
tains no point of M,, therefore there exist open sets C, and
Cs, containing 4 and B respectively, such that C, contains
no point of L+ M; and C» contains no point of L4 M,.
There exists an integer § such that, for every j greater than
4, the point set a; lies wholly in C, and the point set b&; lies
wholly in C,. Thus, for every j greater than §, M; contains
a point of M, and also a point of M;. But M; is a sub-
continuum of M, and every subcontinuum of M which con-
tains a point of each of the sets M, and M, must contain
at least one point of L. Hence, for every j greater than 9,
M ; contains a point of L, and therefore of some one of the

sets Ly, Ly, - - -, Ln. It follows that there exists an integer
¢ and an infinite sequence of distinct positive integers
t, t, t3, - - such that, for every j, L, contains at least

one point in common with M. Since, for every j, the sub-
continuum L, of M contains a point of M;; and a point of
M., it follows by a lemma of R. L. Moore’s* that L,
must contain a point either of a;; or of b;,. Thus there exists
an infinite sequence of distinct integers ji, j2, js, * - -, such
that either L, has a point in common with each point set

* A characterization of a continuous curve, loc. cit., Lemma 2.
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of the sequence ¢}, @j, aj, - - -, or it has at least one point
in common with each point set of the sequence bj, bj,
bi, + + - . In the first case it readily follows that 4 contains
at least one point of L,, and in the second case that B con-
tains at least one point of L,, But A+4B is a subset of
M —L. Thus the supposition that M is not a continuous
curve leads to a contradiction.

The condition is also necessary. For let M be any continu-
ous curve in E,, and let K; and K, be any two mutually
exclusive, closed, and bounded subsets of M. It follows by
Theorem 3 that there exists a finite number D, D, Dg, - - -,
D,, of the complementary domains of K, whose sum con-
tains the point set K;. For each positive integer 7=,
let B; denote the boundary of D;, let H; be the set of points
common to K; and D;, and let 4d; be the minimum distance
between the closed sets of points H;and B;. For each point P
of H;+B,, let C, denote a hypersphere with P as center
and radius d;, and let G/ be the collection of all the hyper-
spheres [C,] for all points P of H;+B;. Since K;+K,, and
hence also H;+B;, is bounded, then by the Borel theorem
there exists a finite subcollection G; of the hyperspheres of
G! such that H;+B; is a subset of the sum I; of the interiors
of the collection G;. Let T; denote the point set (D;+.B;)
—I1;-(D;4+B;). Then T; is closed. Let F; denote the sum
of all the hyperspheres (not including their interiors) of the
collection G; which enclose at least one point of H;, and let
N; be the sum of all those which enclose at least one point
of B;. Since the least distance between H; and B; is 4d;,
and since the radius of each hypersphere of G; is d;, it follows
that F; and N, are mutually exclusive closed sets whose least
distance apart is >d;. Let Q; denote the collection of all
those maximal connected subsets of M which lie wholly in
T'; and contain at least one point of each of the sets F; and N..
Each element of Q; is a continuum, and since M is a con-
tinuous curve, it follows by the Moore-Wilder lemma that
Q. has just a finite number of elements. Hence Q; is a finite
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collection of mutually exclusive continua Ly;, Lai, L3s, - - -,
L,;; which belong to M.

Now let L denote the point set >.;_;> i;L;. Then
L is the sum of a finite number of mutually exclusive
subcontinua of M. Let M, denote the sum of all those
components of M — Lwhich contain at leastone point of 4, and
let M, denote the point set M —(M,+L). No point of B
belongs to M,. For if a point X of B belonged to M,, then*
X could be joined in M to some point ¥ of 4 by an arc
which contains no point of L, and this arc would contain
a subarc ¢ which is a subset of some set T'; and which has its
end points on F; and N, respectively; and the arc ¢ would
necessarily be a subset of some continuum of the collection
Q;, contrary to the fact that ¢ contains no point of L. There-
fore B must be a subset of M. Since M is connected im
kleinen and L is closed, it readily follows that M, and M,
are mutually separated. Hence M —L is the sum of two
mutually separated sets M, and M; containing 4 and B
respectively, and therefore L separates 4 and B in M.

THEOREM 5. In order that a continuum M in a space of
n dimensions should be a Menger regular curvel it is necessary
and sufficient that every two points of M should be separated
wn M by some finite subset of M.

Proor. The condition is sufficient. Let P be any point of
M and € any positive number. Let C; and C; be two distinct
hyperspheres each of which has P as center and is of radius
less than e/4. Let D denote the domain between C; and C,,
and let K denote the set of points common to D+ Ci+C;
and to M. Then K is closed. Now by Theorem 2 it follows

* R. L. Moore, Concerning continuous curves in the plane, loc. cit.

t A continuum M is said to be a Menger regular curve provided that
for each point P of M and each positive number e there exists an open
subset T of M of diameter less than ¢ which contains P and whose M-
boundary is finite. The M-boundary of an open subset T of a continuum
M is the set of all those points of M —T that are limit points of T. See
K. Menger, Grundziige einer Theorie der Kurven, Mathematische Annalen,
vol. 95 (1925-1926), pp. 276-306.
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that M is a continuous curve. By hypothesis, for each
point X of K there exists a finite subset IV, of M which
separates X and P in M. For each such point X, the maximal
connected subset H, of M — N, which contains X is an open
subset of M which does not contain P and whose M-boundary
is finite (a subset of N,). Let G, denote the collection of sets
[H.] for all points X of K. Since K is closed and bounded,
then by the Borel theorem the collection G, contains a
finite subcollection G which covers K. Let R denote the
sum of all the point sets of the collection G. Then K is a
subset of R, and R is an open subset of M. Furthermore B,
the M-boundary of R, is finite, for R is the sum of a finite
number of the sets H,. Now, supposing that C; is within
Cy, let A denote the set of all those points of B which lie
on or within C;. Now R+A4 does not contain P, for P
belongs to no set H, and to no NV,. Let T denote the maximal
connected subset of M —A4 which contains P. It is readily
seen that T must lie within C;. Hence the diameter of T is
less than e. The M-boundary of T is finite, because it is a
subset of 4. Then, since T is an open subset of M, it follows
that P is a regular point of M and that M is a Menger regular
curve.

That the condition is necessary follows at once from the
definition of a Menger regular curve.

THEOREM 6. If every two points of a continuum M are
separated in M by some finite subset of M, then every two
mutually exclusive, closed, and bounded subsets of M are
separated in M by some finite subset of M.

Proor. It follows by Theorem 5 that M is a Menger
regular curve. Then by a theorem of Menger’s,* it follows
that every two mutually exclusive, closed, and bounded
subsets of M can be separated in M by some finite subset
of M.

THE UNIVERSITY OF TEXAS

* Loc. cit., Theorem 12.



