THE POLAR CURVES OF PLANE ALGEBRAIC CURVES IN THE GALOIS FIELDS*

BY A. D. CAMPBELL

By imitating the proofs in Fine's College Algebra (pp.460462) and Veblen and Young's Projective Geometry (vol. I, pp. 255-256) we can readily show that also in the Galois fields of order p^{n} (p a prime integer) we have Taylor's expansion

$$
\begin{aligned}
& f(x+\lambda X, y+\lambda Y, z+\lambda Z) \\
& \equiv f(x, y, z)+\frac{\lambda}{1!}\left(f_{x}^{\prime} X+f_{y}^{\prime} Y+f_{z}^{\prime} Z\right) \\
& \quad+\frac{\lambda^{2}}{2!}\left(f_{x}^{\prime} X+f_{y}^{\prime} Y+f_{z}^{\prime} Z\right)^{(2)}+\cdots \\
& +
\end{aligned}
$$

where $\left(f_{x}^{\prime} X+f_{y}^{\prime} Y+f_{z}^{\prime} Z\right)^{(i)}$ is symbolic for an expression containing derivatives of the i th order, and $f(x, y, z)=0$ is an algebraic curve of order n. In the above expansion we must take all the derivatives as though p were not a modulus, cancel out common factors from numerators and denominators, and then set $p=0$.

The r th polar of (X, Y, Z) with respect to $f(x, y, z)=0$ is

$$
\frac{1}{r!}\left(f_{x}^{\prime} X+f_{v}^{\prime} Y+f_{z}^{\prime} Z\right)^{(r)}=0 .
$$

In particular the r th polar of $(1,0,0)$ is $(1 / r!) \partial^{r} f(x, y, z) / \partial x^{r}$ $=0$. We suppose first of all that n has the value

$$
\begin{aligned}
n=\alpha p^{m}+\beta p^{m-1}+\cdots+\gamma p^{2}+ & \delta p+\epsilon, \\
& \epsilon \neq 0, \quad p=\epsilon+\zeta, \quad \zeta \neq 0 .
\end{aligned}
$$

[^0]We can write the polars of $(1,0,0)$ by a sort of detached coefficients, underlining the coefficients that have p as a factor, as follows:

$$
\begin{aligned}
& \text { (1/1!) }[n, n-1, n-2, \cdots, \underline{n-\epsilon}, n-\epsilon-1, \\
& \left.\cdots, n-p-\epsilon, \cdots, n-p^{2}-\epsilon, \cdots, 3,2,1\right]=0, \\
& (1 / 2!)[n(n-1),(n-1)(n-2), \cdots,(n-\epsilon+1)(n-\epsilon), \\
& (\underline{n-\epsilon})(n-\epsilon-1), \cdots,(n-p-\epsilon+1)(\underline{n-p-\epsilon)}, \\
& (n-p-\epsilon)(n-p-\epsilon-1), \cdots,\left(n-p^{2}-\epsilon+1\right) \\
& \text { - } \left.\left(\underline{n-p^{2}-\epsilon}\right),\left(\underline{n-p^{2}-\epsilon}\right)\left(n-p^{2}-\epsilon-1\right), \cdots, 3 \cdot 2,2 \cdot 1\right]=0 \text {, } \\
& {[1 /(\epsilon+1)!][n(n-1)(n-2) \cdots(\underline{n-\epsilon}),(n-1)(n-2) \cdots} \\
& \cdot(\underline{n-\epsilon})(n-\epsilon-1), \cdots,(\underline{n-\epsilon})(n-\epsilon-1) \cdots(n-2 \epsilon) \text {, } \\
& (n-\epsilon-1)(n-\epsilon-2) \cdots(n-2 \epsilon)(n-2 \epsilon-1), \cdots, \\
& (\epsilon+1)!]=0, \\
& (1 / p!)[n(n-1) \cdots(\underline{n-\epsilon}) \cdots(n-p+1) \cdots, p!]=0,
\end{aligned}
$$

where $(n-\lambda)(n-\lambda-1) \cdots(n-\lambda-i)$ stands for all the terms of the same $(n-\lambda-i-1)$ power, which then have this common factor in their coefficients. From the above polars we see that the ϵ th polar has at $(1,0,0)$ a tangent having $(\epsilon+1)$-point contact if $(1,0,0)$ is not on $f(x, y, z)=0$, otherwise a multiple point of order $\epsilon+1$. The $(\epsilon+1)$ th polar, $(\epsilon+2)$ th, $\cdots,(p-1)$ th polar all have multiple points of order $\epsilon+1$ at ($1,0,0$). Similarly the $(p+\epsilon+1)$ th polar, $(p+\epsilon+2)$ th, $\cdots,(2 p-1)$ th have at $(1,0,0)$ multiple points of order $\epsilon+1$; also the $(2 p+\epsilon+1)$ th polar points of order $(3 p-1) \mathrm{h}, \cdots$, the $\left(\theta p^{i}+\cdots+\phi p+\epsilon+1\right)$ th polar points of order $\left(\theta p^{i}+\cdots+\phi p+p-1\right)$ th, etc. Moreover we note that if any one of the polar curves that have multiple points at $(1,0,0)$ is a curve of degree $\epsilon+1$, then this polar curve is degenerate. Thus for $p=2, n=2^{2}+1, \epsilon=1$, we find the 2 d
polar is degenerate; for $p=3, n=3+1, \epsilon=1$, we find again the 2 d polar is degenerate.

If $n=\alpha p^{m}+\beta p^{m-1}+\cdots+\gamma p^{2}+\delta p$, i.e. $\epsilon=0$ in n, then all the polars of $(1,0,0)$ pass through ($1,0,0$) whether or not this point lies on $f(x, y, z)=0$.

If $n<p$ we find no peculiarities like the above.
Syracuse University

THE CHARACTERISTIC EQUATION OF A MATRIX*

BY E. T. BROWNE

1. Introduction. Consider any square matrix A, real or complex, of order n. If I is the unit matrix, $A-\lambda I$ is called the characteristic matrix of A; the determinant of the characteristic matrix is called the characteristic determinant of A; the equation obtained by equating this determinant to zero is called the characteristic equation of A; and the roots of this equation are called the characteristic roots of A. If A happens to be a matrix of a particular type certain definite statements may be made as to the nature of its characteristic roots. For example, if A is Hermitian its characteristic roots are all real; if A is real and skewsymmetric, its characteristic roots are all pure imaginary or zero; if A is a real orthogonal matrix, its characteristic roots are of modulus unity. However, if A is not a matrix of some special type, no general statement can be made as to the nature of its characteristic roots. In 1900 Bendixson \dagger proved that if $\alpha+i \beta$ is a characteristic root of a real matrix A, and if $\rho_{1} \geqq \rho_{2} \geqq \cdots \geqq \rho_{n}$ are the characteristic roots (all real) of the symmetric matrix $\frac{1}{2}\left(A+A^{\prime}\right)$, then $\rho_{1} \geqq \alpha \geqq \rho_{n}$. The extension to the case where the elements of A are com-
[^1]
[^0]: * iresented to the Socicty, December 23, 1927.

[^1]: * Presented to the Society, December 28, 1927.
 \dagger Bendixson, Sur les racines d'une équation fondamentale, Acta Mathematica, vol. 25 (1902), pp. 359-365.

