THE FORMS $a x^{2}+b y^{2}+c z^{2}$ WHICH REPRESENT ALL INTEGERS

BY L. E. DICKSON

Theorem. $f=a x^{2}+b y^{2}+c z^{2}$ represents all integers, positive, negative, or zero, if and only if: I. a, b, c are not all of like sign and no one is zero; II. no two of a, b, c have a common odd prime factor; III. either a, b, c are all odd, or two are odd and one is double an odd; IV. -bc, -ac, -ab are quadratic residues of a, b, c, respectively.

We shall first prove that I-IV are necessary conditions. Let therefore f represent all integers. It is well known that I follows readily.

If a and b are divisible by the odd prime p, f represents only $1+\frac{1}{2}(p-1)$ incongruent residues $c z^{2}$ modulo p. This proves II.

Next, no one of a, b, c is divisible by 8 . Let $a \equiv 0(\bmod 8)$. Every square is $\equiv 0,1$, or $4(\bmod 8)$. First, let $b=2 B$. Since f represents odd integers, c is odd. Since $b y^{2} \equiv 0$ or $2 B$ $(\bmod 8)$ and $c z^{2} \equiv 0, c$, or $4 c, f$ has at most six residues modulo 8. If m is a missing residue, f represents no $m+p n$. Second let b and c be odd. Then $4 b \equiv 4 c \equiv 4(\bmod 8)$. Thus the residues of f modulo 8 are obtained by adding each of 0,4 , b to each of $0,4, c$; we get only seven residues $0,4, b, c$, $4+b, 4+c, b+c$.

No one of a, b, c is divisible by 4 . Let a be divisible by 4 . Since a is not divisible by $8, a \equiv 4(\bmod 8)$. Evidently $f \equiv 0, b, c$, or $b+c(\bmod 4)$. No two of these are congruent modulo 4. If $b \equiv \pm 1(\bmod 4)$, they are $0, \pm 1, c, c \pm 1$. Evidently c is not congruent to $0, \pm 1$, or ∓ 1. Hence $c \equiv 2(\bmod 4)$. Since $b \neq 0$, this proves that one of b and c is $\equiv 2(\bmod 4)$. By symmetry, we may take $b \equiv 2(\bmod 4)$. If $b \equiv 6(\bmod 8)$, we apply our discussion to $-f$ instead of
f. Hence take $b \equiv 2(\bmod 8)$. Thus $a \equiv 8 n+4, \quad b=8 m+2$, and c is odd. Since $x^{2} \equiv 0$ or $1(\bmod 4), a x^{2} \equiv 0$ or $8 n+4$ $(\bmod 16)$. Since $y^{2} \equiv 0,1$ or $4(\bmod 8), b y^{2} \equiv 0,8 m+2$, or 8 $(\bmod 16)$. We employ only even residues of f modulo 16. Then z is even, and $c z^{2} \equiv 0$ or $4 c(\bmod 16)$. But $c \equiv \pm 1$ $(\bmod 4), 4 c \equiv \pm 4(\bmod 16)$. Evidently $a x^{2}+b y^{2}$ has at most 2×3 residues modulo 16 . The missing two even residues are seen to be s and $s+4$, where $s=10$ if n and m are both even, $s=2$ if n is even and m odd, $s=6$ if n is odd and m even, $s=14$ if n and m are both odd. According as $4 c \equiv 4$ or $-4, f$ is not congruent to $s+4$ or s modulo 16 .

No two of a, b, c are even. Let us set $a=2 A, b=2 B$. By the preceding result, A and B are odd. Also, c is odd. If $A=4 n-1$, we use $-f$ in place of f. Hence let $A=4 n+1$. Then $f \equiv 2 x^{2}+2 B y^{2}+c z^{2}(\bmod 8)$. Consider only odd residues of f. Then $c z^{2} \equiv c(\bmod 8)$. The residues of $2 x^{2}+2 B y^{2}$ are $0,2,2 B, 2 B+2$. When these are increased by c, the sums must give the four odd residues modulo 8 . Hence no two are congruent. Thus no two of $0,1, B, B+1$ are congruent modulo 4 . Since B is odd and $\neq 1(\bmod 4), B \equiv 3, B+1 \equiv 0$, a contradiction.

This completes the proof of property III. Properties II and III imply the following property.

V. a, b, c are relatively prime in pairs.

Thus $c d \equiv-b(\bmod a)$ has a solution d which is prime to a. Suppose that d were a quadratic non-residue of an odd prime factor p of a. Write $a=p A$. Consider values of x, y, z for which f is divisible by p. Then $z^{2} \equiv d y^{2}(\bmod p)$, whence y and z are divisible by p. Hence $f=p F$, where $F \equiv A x^{2}$ $(\bmod p)$. Evidently $A x^{2}$ takes at most $1+\frac{1}{2}(p-1)$ values incongruent modulo p. Hence there is an integer N that is not congruent to one of them. Thus f fails to represent $p(N+p w)$ for any value of w. This contradiction proves that $v^{2} \equiv d(\bmod p)$ is solvable. The usual induction shows that it is solvable modulo p^{n}. Also, $d^{2} \equiv d(\bmod 2)$. By means of the Chinese remainder theorem, we see that $w^{2} \equiv d(\bmod a$, is solvable whether a is odd or double an odd integer,

Then w is prime to a since d is. Since $(c w)^{2} \equiv-b c(\bmod a)$ this proves IV.

We shall now prove that I-IV imply that f represents every integer g. It is known* that I, IV and V imply that $f=0$ has solutions $x^{\prime}, y^{\prime}, z^{\prime}$ which are relatively prime in pairs. Then the greatest common divisor of the three numbers $\alpha=a x^{\prime}, \beta=b y^{\prime}, \gamma=c z^{\prime}$ is 1 . For, if they are all divisible by a prime p, one of $x^{\prime}, y^{\prime}, z^{\prime}$ is divisible by p (otherwise a, b, c would all be divisble by p). By symmetry, let x^{\prime} be divisble by p. Then neither y^{\prime} nor z^{\prime} is divisible by p. Hence b and c would be divisble by p, contrary to V. Hence \dagger if D is any given integer, ξ, η, ζ may be chosen so that

$$
\begin{equation*}
\alpha \xi+\beta \eta+\gamma \zeta=D \tag{1}
\end{equation*}
$$

We seek a solution of $f=g$ of the form

$$
\begin{equation*}
x=n x^{\prime}+\xi, \quad y=n y^{\prime}+\eta, \quad z=n z^{\prime}+\zeta \tag{2}
\end{equation*}
$$

Since $a x^{\prime 2}+\cdots=0, f=g$ is satisfied if

$$
\begin{equation*}
2 D n=g-e \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
e=a \xi^{2}+b \eta^{2}+c \zeta^{2} \tag{4}
\end{equation*}
$$

If $\xi^{\prime}, \eta^{\prime}, \zeta^{\prime}$ is a second set of solutions of (1), write

$$
X=\xi-\xi^{\prime}, \quad Y=\eta-\eta^{\prime}, \quad Z=\zeta-\zeta^{\prime}
$$

Then

$$
\begin{equation*}
\alpha X+\beta Y+\gamma Z=0 \tag{5}
\end{equation*}
$$

We seek the general solution of (5). Let δ be the greatest common divisor of $\alpha=\delta A$ and $\beta=\delta B$. Then δ is prime to γ, whence $Z=-\delta w$. Hence

$$
\begin{equation*}
A X+B Y=\gamma w, A, B \text { relatively prime. } \tag{6}
\end{equation*}
$$

There exist integers r, s satisfying

$$
\begin{equation*}
A r+B s=1 \tag{7}
\end{equation*}
$$

[^0]Multiply the second member of (6) by (7). Thus

$$
A(X-\gamma r w)+B(Y-\gamma s w)=0
$$

The quantities in parenthesis are equal to $B m$ and $-A m$, where m is an integer. The resulting values of X and Y, together with $Z=-\delta w$, give the general solution of (6). Hence if $\xi^{\prime}, \eta^{\prime}, \zeta^{\prime}$ is one solution of (1), the general solution is

$$
\begin{equation*}
\xi=\xi^{\prime}+\gamma r w+B m, \eta=\eta^{\prime}+\gamma s w-A m, \zeta=\zeta^{\prime}-\delta w, \tag{8}
\end{equation*}
$$ where w and m are arbitrary, while r, s satisfy (7).

First, let a, b, c be all odd. Then $x^{\prime}+y^{\prime}+z^{\prime} \equiv 0(\bmod 2)$. But $x^{\prime}, y^{\prime}, z^{\prime}$ are not all even. Hence just one of them is even. By symmetry, we may take x^{\prime} even, y^{\prime} and z^{\prime} odd. Then α is even, β and γ are odd, δ is odd, A is even, B is odd. Write

$$
\begin{equation*}
e^{\prime}=a \xi^{\prime 2}+b \eta^{\prime 2}+c \zeta^{\prime 2} \tag{9}
\end{equation*}
$$

When working modulo 2 , we may discard the exponents 2 in (4) and (9). Take $w=0, m=1$. Then, by (8),

$$
\begin{aligned}
& \xi \equiv \xi^{\prime}+1, \quad \eta \equiv \eta^{\prime}, \quad \zeta \equiv \zeta^{\prime}, \quad(\bmod 2) \\
& e \equiv \xi+\eta+\zeta \equiv e^{\prime}+1
\end{aligned}
$$

For $w=m=0$, evidently $e=e^{\prime}$. Hence we may take $e \equiv g$ $(\bmod 2)$. We may take $D=1$. Then (3) yields an integral value of n. Hence $f=g$ is solvable.

Second, let a and b be odd, but c the double of an odd integer, whence $c \equiv 2(\bmod 4)$. Since $f \equiv x+y(\bmod 2)$, $x^{\prime}+y^{\prime}$ is even. But x^{\prime} and y^{\prime} are relatively prime. Hence x^{\prime} and y^{\prime} are odd. Thus α and β are odd, γ is even, δ is odd, A and B are odd. By (1) and (4),

$$
\begin{equation*}
D \equiv \xi+\eta \equiv e, \quad(\bmod 2) \tag{10}
\end{equation*}
$$

If g is odd, we take $D=1$. (See footnote on p.59.) By (10), $g-e$ is even and (3) yields an integer n.

But if g is even, we take* $D=2$. By (10), $\xi+\eta$ and e are even. In (8), take $w=0, m=1$. Then

$$
\begin{equation*}
\xi=\xi^{\prime}+B, \quad \eta=\eta^{\prime}-A, \quad \zeta=\zeta^{\prime} \tag{11}
\end{equation*}
$$

In case ξ^{\prime} and η^{\prime} are odd, we replace $\xi^{\prime}, \eta^{\prime}, \zeta^{\prime}$ by the preceding solution having ξ and η even. Hence we may choose the initial solution $\xi^{\prime}, \eta^{\prime}, \zeta^{\prime}$ so that ξ^{\prime} and η^{\prime} are even. Then (11) gives

$$
e \equiv e^{\prime}+a B^{2}+b A^{2} \equiv e^{\prime}+a+b \quad(\bmod 4)
$$

Hence if $a+b \equiv 2(\bmod 4)$, we may choose e so that $e \equiv g$ $(\bmod 4)$. Then (3) yields an integral value of n. But if $a+b \equiv 0(\bmod 4)$, we take $w=1, m=0$ in (8) and see that ξ and η are even since γ is even. Then since δ is odd and $c \equiv 2(\bmod 4)$,

$$
e \equiv 2 \zeta^{2}=2\left(\zeta^{\prime}-\delta\right)^{2} \equiv 2 \zeta^{\prime 2}+2=e^{\prime}+2(\bmod 4)
$$

As before, $f=g$ is solvable.
Corollary. If $a x^{2}+b y^{2}+c z^{2}$ is not a Null form, it does not represent all integers.

Examples with $a=1, c=-C, C>0$.
(i) $b=1$. Then C must be odd or double an odd integer and -1 must be a quadratic residue of C. Then every odd prime factor of C is $\equiv 1(\bmod 4)$. A necessary and sufficient condition on C is that it be a sum of two relatively prime squares.
(ii) $b=2$. Then C must be odd and -2 a quadratic residue of C. Then its prime factors are $\equiv 1$ or $3(\bmod 8)$. A necessary and sufficient condition on C is that it be of the form $r^{2}+2 s^{2}, r$ odd, r and s relatively prime.
(iii) $b=3$. Then C must be odd or double an odd integer, C prime to 3 , while C and -3 must be quadratic residues of each other. Hence every prime factor of C is $\equiv 1(\bmod 6)$. Necessary and sufficient conditions on C are that C be odd and of the form $r^{2}+3 s^{2}$, where r and s are relatively prime.

The University of Chicago

[^1]
[^0]: * Dirichlet-Dedekind, Zahlentheorie, ed. 4, §157, p. 432 (Supplement X).
 \dagger Since the g. c. d. 1 of α, β, γ, is a linear function of them. Multiply the relation by D.

[^1]: * Elimination of ξ, η, ζ between (1) and (2) gives $\alpha x+\beta y+\gamma z=D$. Here $D \equiv x+y \equiv f(\bmod 2)$. Hence $D \equiv g(\bmod 2)$.

