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MODERN HYDRODYNAMICAL THEORY, WITH 
SPECIAL R E F E R E N C E TO AERONAUTICS* 

BY F . D. MURNAGHAN 

A. GENERAL NOTIONS AND THEOREMS 

1. Particle and Local Differentiation. In hydrodynamical 
theory matter is regarded as distributed continuously, but its 
various points are supposed to be capable of identification; 
we shall refer to them as particles. In order to identify a 
particle, a material reference frame is introduced, and we 
shall suppose for simplicity that this is a rectangular Car­
tesian frame. At any convenient initial instant / = /o, the 
coordinates of a particle may be denoted by (a, b, c) ; and at 
any later instant the coordinates of the same particle may be 
denoted by (x, y, z). We make the assumption that (x, y, z) 
are differentiable functions of a, b, c, and t. This assumption 

FIG. 1 

must be carefully noted since the principal object of interest 
to us later on will be the flow of a fluid around an obstacle 
and the fluid will divide at the obstacle. Thus two particles 
initially adjacent (as A and A' in Fig. 1) will not be adjacent 
when separated by the obstacle as at P and P'. Our subse-

* This paper is a somewhat formal and detailed presentation of the 
contents of an address delivered at the invitation of the program committee 
at the meeting of this Society on October 29, 1927. The adjective modern 
in the title of the address refers to the first quarter of the present century, 
but in order to make the paper easily intelligible to mathematical readers 
who have not specialized in hydrodynamics, I give a statement of the more 
important results which had been previously obtained. 
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quent remarks will apply, then, separately to the two por­
tions of the fluid which separate at the obstacle but not to 
the fluid as a whole. A particle may be identified either by 
means of (a, b, c, t) which are known as the particle, or La-
grangian, variables or by means of (x, yy z, t) which are 
known as the local, or Eulerian, variables; we shall denote 
time differentiation when the particle variables are used by 
d/dt and when the local variables are used by d/dt. The 
velocity components (dx/dt, dy/dt, dz/dt) being denoted by 
(u, v, w), we have the relation 

d d d d d 
(1) — == (- u \-v \-w—• 

dt dt dx dy dz 
In particular the acceleration components (du/dt, dv/dt, 
dw/dt) are given, in terms of the local variables, by formulas 
of the type 

du du du du du 
(2) — = h u h v \-w—• 

dt dt dx dy dz 

The paths of the various particles are found, if (u, v, w) are 
known in terms of the local variables, by integrating the 
three equations 

dx dy dz 
(3) — = — = — = dt. 

U V W 

At any given instant / = h the stream-lines are given by inte­
grating the two equations 

ox ôy dz 
(4) - = JL = - , 

U\ Vi W\ 

where Ui — u(x, y, z, h), and so on. The oo3 paths must then 
be distinguished from the oo2 stream-lines. They coincide 
geometrically when the stream-lines are permanent, that is, 
when du/dt = 0, dv/dt = 0, dw/dt = 0 identically in t. In this 
case the motion is said to be steady, and in the applications 
with which we shall be concerned steady motion is assumed. 
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2. The Principle of Conservation of Mass. This postulates 
the existence of a positive density function p, which we 
assume to be differentiate, and such that the volume integral 
fp 5(x, y, z) does not vary with t, the volume of integration 
consisting of the same particles. In other words fp 5(x, y, z) 
is an integral invariant of the equations (3). If the initial 
value of p be denoted by p0, the differential form of statement 
of the principle of conservation is, in terms of the particle 
variables, 

d(x,y,*) 

d(a,b,c) 

and in terms of the local variables, 

dp d d d 
(5) — + —(pu) + ~(pv) + -~{pw) = 0. 

ot ox ay dz 

This equation is known as the equation of continuity and it 
may be put in the equivalent form 

dp /du dv dw\ 
+ p( —+ —+ — ) = o-dt \dx dy dz / 

For an incompressible fluid dp/dt = 0 and the equation of 
continuity is 

du dv dw 
(6) — + — + — = 0. 

dx dy dz 

3. The Circulation Integral. With any closed curve C of 
particles we may associate, at any instant t, the number 

(7) Y = (p (ubx + vdy + wôz), 

where S indicates the differential with respect to the par­
ameter of the curve. The integral V is known as the circula­
tion around the curve; and an application of Stokes' theorem 
enables us to write it in the equivalent form 
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(8) r = ƒ*«(?,*) + vô(z,x) + f«(*,y), 

where 

are the vorticity components and the surface of integration 
is bounded by C. A simple calculation shows that 

dw dv 
t = — — — j 

dy dz 

du dw 
yj = — j 

dz dx 

dv du 
y = — — — 

dx dy 

(9) 

+ 

dT r j / d dw d dv\ 

dt~~ J \\dy dt dz dt) 

/ d du d dw\ / d dv d du\ ) 

\dz dt dx dt) \dx dt dy dt) j 

Hence the necessary and sufficient conditions that dT/dt = 0 
for every closed curve C are 

d dw d dv 

dy dt dz dt 

and so forth. In other words, V is a (relative) integral in­
variant of the equations (3) provided that the acceleration 
components are derivable from a potential function Q, that 
is, provided that 

du dQ dv dQ dw dQ 

dt dx dt dy dt dz 

and conversely. In our applications this will be the situation. 
A particular instance of importance occurs when T = 0 
throughout a region of the fluid; then the vorticity com­
ponents (£, rj, f) are zero and the motion is said to be irro-
tational in that region. The velocity components are deriv­
able from a single function 0 as follows : 

d<j> d<j> d<j> 
(11) u = —J v = —f w = — ; 

dx dy dz 
and <£ is called the velocity potential. 
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4. The Fundamental Equations and the Concept of a Perfect 
Fluid. If we focus our attention on a particular point (x, y, z) 
of the fluid, the orientation of a particular element of area 
bS through (x, yy z) may be specified by means of the direction 
cosines (/, w, n) of one of the two directed normals to bS and 
we may call the side of bS towards which the normal is drawn 
its positive side. Then the fluid on the negative side of 55 
exerts on the fluid on the positive side a force whose com­
ponents may be denoted by (Px bS, Py bS, Pz bS), where 
(Px, Py, Pz) are given in terms of (/, m, n) and nine coefficients 
(pxxy pxV, - - • , pzz) by the equations 

Px = Ipxx + mpyx + npzx, 

(12) Py = lpxy + mpyy + Upzy, 

Pz = lpx* + mpyz + np„. 

The nine coefficients (pxx, pxy, • • • , pzz) constitute what is 
called the stress or pressure tensor. If the fluid is subjected to 
a system of forces (X, F, Z) per unit mass, a simple applica­
tion of the fact that the total force acting on any portion 
of the fluid is equal to the time rate of change of its linear 
momentum yields the equations 

du (dpxx dpyx dpzx\ 

dt \ ox ay oz / 

dv dw 
9 dt~ ' P~dt~ 

In deriving these we have used the fact that if there are 
surface forces, whose components are (F, G, H) per unit area, 
acting on the fluid then (see (1)) we have 

(14) F + lpxx + mpyx + npzz = 0 ; G + = 0 ; H + = 0 ; 

where (/, mt n) are the direction cosines of the outward drawn 
normal. The theorem that the moment of the forces acting on 
the fluid about any axis is equal to the time rate of change 
of its angular momentum about this axis yields the fact that 
the pressure tensor is symmetric, that is, 
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^lv)j pzy Pyzy P xz pzxy Pyx P xy • 

A perfect fluid is by definition one such that the stress across 
any element is normal to it; it is this quality of inability to 
withstand tangential stresses that distinguishes fluids from 
solids. The equations (12) combined with Px:Py:Pz 

= l:m:n for arbitrary values of the ratios l\m\n show that 
the pressure tensor for a perfect fluid is the scalar tensor 
(p, 0, 0; 0, p, 0; 0, 0, p), where p is the common value of 
pxx, pyy, pzz- The number p is called the pressure of the perfect 
fluid and it is well to remember that the concept of pressure, 
as here defined, does not exist for a non-perfect or viscous 
fluid. For a perfect fluid the equations of motion are 

du dp dv dp dw dp 
(16) p— = pX ; p— = pY ; p— = pZ ; 

dt dx dt dy dt dz 

to which must be added the boundary conditions 

(17) F + lp = 0, G + mp = 0, H + np = 0, 

where p denotes, in these latter equations, the pressure at 
the boundary of the fluid. I t is clear from (16) that an 
acceleration potential Q exists for a perfect fluid if (1) 
(Xy F, Z) are derivable from a potential function V, that is, if 

X = -

and (2) if 

1 dp 

p dx 

dV 

dx 

dP 

dx 

dV 

dy 

1 dp dP 

p dy dy 

dV 
Z = ; 

dz 

l dp dP 

p dz dz 

where P is any function of x, y, z and t. Then Q = V+P. We 
shall be concerned mainly with the case where the fluid is 
homogeneous, that is, dp/dx = 0, dp/dy = 0, dp/dz = 0, and in 
this case P = p/p so that 

(18) Q = V + — . 
P 
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If our first condition is satisfied but not our second we have 
from (9) 

•te) 
o{z,x) 

d (K) 
d(x,y) 

• J"'('-T)'-/KT)-
5. Bernoulli's Theorem connecting Pressure and Velocity. 

When an acceleration potential Ç exists the three equations 
du/dt= — dQ/dx, etc., may be written in the form 

du 

dt 

d ( 1 \ 
+ T?W ~- ffl = - — [Q+ — q2), 

dx\ 2 / 

and so forth, where (£, 77, f) are the vorticity components 
and q2 = u2-\-v2-\-w2 is the square of the velocity. These 
yield at once the equation 

dQ 

dt 7,(Q+i<')-
so that when Q is free of t, Q+q2/2 is a first integral of the 
equations (3). In other words Q+q2/2 has a constant value 
along any one path but it will, in general, vary from path to 
path. If, however, the motion is steady (du/dt = 0, etc.), and 
irrotational (£ = 0, etc.), we have d(Q + q2/2)/dx = 0, etc., so 
that Q-\-q2/2y being free of t, is a number independent of x, 
y, z and /. In the application with which we shall be con­
cerned we shall have F = 0, P = p/p, so that Q= V+P = p/p, 
with p a numerical constant. Hence we may write 

(20) p + \pq2 = po ; or p = p0 - \pq2-, 

where ?̂o is a constant throughout the fluid. Since po is 
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what p becomes wherever q = 0, it is called the static pressure. 
The additional term — pq2/2 is called the dynamic pressure. 

6. The Forces and Turning Moments Experienced by Solids 
in the Fluid, The equations (16) may be written in the form 

dp du du d d d 
(21) pX - — = p — = P— + — (p^2) + —(puv) +—(puw), 

ox at at ox dy dz 

and so forth, on using (5). Upon integrating this equation 
throughout the region of the fluid between the immersed 
solid, or solids, S and any convenient outer boundary sur­
face 5 ' , and using the fact that at any point of the surface of 
a solid the velocity of the fluid is tangential to the surface, 
we find that the force components (Fx, Fy, Fz) exerted by the 
fluid on the immersed solids are given by equations of the 
form 

( 2 2 ) F * = fpXdr- f—(pu)dr %T 

I pu(lu + mv + nw)dS' — I pldS\ 

where (/, m, n) are the direction cosines of the normal to 
dS', drawn away from the fluid. In the cases to which we 
shall apply this result we shall assume the applied mass 
forces negligible (X = 0, etc.), the motion steady (du/dt = 0, 
etc.) and irrotational (so that (20) is applicable) and the 
fluid is compressible and homogeneous; we find then 

(23) Fx = — f {l(u2 + v2+ w2) - 2u(lu + mv + nw)} dS' 

Fv = ; Fz = 

In a similar way, the moments (Mx, My, Mz) about the co­
ordinate axes of the forces exerted by the fluid on the im­
mersed obstacle are given by equations of the form 

(24) Mx = — f {(yn- zm)(u2 + v2 + w2) 

— 2{yw — zv)(Ju + mv + nw)}dS', 
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and so forth. I t is with these forces and moments that we 
shall be mainly concerned and the significance of the 
formulas given lies in the fact that the desired values are 
obtained by integration over an arbitrary surface S' enclosing 
the obstacles. I t will be usually convenient, when the fluid 
is supposed infinite in extent, to regard S' as receding to in­
finity and we see that a knowledge of the nature of the flow 
at infinity suffices to determine the forces exerted on the 
solids by the fluid and also the moments of these forces. 

B. TWO-DIMENSIONAL IRROTATIONAL MOTION 

7. The Complex Velocity and Potential. In many applica­
tions we may assume, at any rate to a first approximation, 
that the velocity of each particle is parallel to a given plane 
and independent of its distance from it. Taking the given 
plane as our (x, y) plane we have w = 0 and (y, v) independent 
of z. We shall find it convenient to introduce the complex 
variable x+iy and as we shall not have occasion to use the 
symbol z in this section in its previous sense we shall denote 
x+iy by z. Assuming the fluid to be incompressible we have, 
from (6), the relation 

du dv 

(25) r + r = 0> 
ox ay 

and if we further assume the motion to be irrotational we 
have 

dv du 
(26) f = = o . 

ox dy 

The equations (25) and (26) are equivalent to the statement 
tha t u — iv is a function of z. We shall denote this function 
by w(z), since there is no possibility of confusion with the 
third velocity component which is now everywhere zero; 
w(z) is called the complex velocity. Upon introducing the 
function f(z) defined, save for an additive constant, by the 
equation 
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(27) ~=w(z), 
dz 

and denoting the real and imaginary parts of ƒ by 0 and t̂ , 
respectively, we have, from (27), 

dô d\p dô drp 
(28) u = — = —, V = -L = - - L . 

dx dy dy dx 

Hence 4> is the velocity potential and the level curves \p = con­
stant are the stream-lines. The function ƒ is called the 
complex potential. The equations (28) tell us that the re­
solved part v8 of the velocity vector in any direction 5 is given 
by 

(29) v. - - ^ 
ds 

(• + 7) 
Once the complex potential ƒ is known the velocity com­
ponents (u, v) follow upon differentiation and from these the 
pressure at any point may be calculated by means of (20), 
the motion being assumed to be steady. 

8. The Flow around a Circular Cylinder. We shall suppose 
that the cylinder, of radius a and with generators per­
pendicular to the (x, y) plane, has a uniform velocity of 
translation V making an angle —a with the positive x axis. 
The flow relative to the cylinder will, therefore, have a 
velocity V making an angle x — a with the positive x axis at 
points remote from the cylindrical obstacle. In other words 
the complex velocity w will have the value W (7 r+a ) = — Veia 

at z = oo so that, at z = oo, ƒ will have the form — Veiaz 
+ terms whose derivatives vanish at z=oo. Since the 
circle in which the cylinder intersects the (#, y) plane must 
be a portion of a stream line, xf/ must be constant along it and 
this constant may be taken to be zero since ƒ is undefined 
to the extent of an additive constant; hence the correspond­
ence set up between points in the z plane and points of the 
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f=(j)+i\f/ plane is such that points on the circle in the z 
plane correspond to points on the axis of reals in the ƒ plane. 
If the center of the circle in the z plane be denoted by z0 and 
if Zo±aei8 are two diametrically opposite points on the 
circle the relation 

f + fo \z-zo+ aeih) 

will set up a correspondence of the kind desired, the ends 
of the segment of the real axis in the ƒ plane being denoted 
by ± ƒ o and C being a constant. In order that ƒ may have 
the proper form, ƒ = — Veiaz+ • • • , at oo, it is necessary 
that C = l and ô = x — a, f0 = 2aV. The terms in ƒ whose 
derivatives vanish at z= <*> may include, since ƒ need not be 
uniform owing to the fact that the portion of the z plane 
outside the circle is not simply connected, a term of the form 
A log (Z — ZQ) ; for if A is a pure imaginary, the imaginary part 
of A log (z — Zo) is constant as we go along the circle in the z 
plane. If we write A = — iT/(2w), the quantity T will be 
the circulation around any closed curve in the (x, y) plane 
which enlaces the cylinder once and we have 

(z - z0)e
ia + — log (z - zo). 

z — Zo J 2w 

We shall see in the next paragraph how T is determined for 
obstacles with a sharp trailing edge. It was precisely this 
determination of V which constituted the first significant 
result belonging to what we have termed the modern period. 

On differentiating ƒ it is seen that there are two points 
where w is zero. If T^47raF, these two points are on the 
circle and are symmetrically situated with respect to the 
diameter of the circle which is perpendicular to the direction 
of flight. The two points are known as rest points and they 
are distinguished from one another by the terms front and 
rear. If the argument of the rear rest-point be denoted by 
7r+j3 we have 
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(31) T = 4waV sin (a + 0). 

9. Flow around an Airfoil. If we have an obstacle in the 
z plane which can be mapped on a circle in an auxiliary f 
plane by means of a relationship of the type 

#1 Ü2 
(32) f = z + _ + _ + 

z 
*2 

which makes the points at <x> in the two planes correspond 
to one another, it is clear from (30) that the desired complex 
potential is given by 

r a2e~ia T iT 
(S3) ƒ = - V\ (f ~ fo )e - + 7 - — l o g ( r - f o ) , 

L f — f oJ 2x 

where f is defined by (32), a is the radius, and f o the center 
of the circle in the auxiliary plane. We shall be interested 
mainly in obstacles whose contour is of the type illustrated 
in Fig. 1; these have a cusp or sharp double point at the 
trailing edge T and so dz/dÇ will be zero there. Now the 
complex velocity 

df df dz 

dz dÇ dÇ 

and this will be infinite at the trailing edge unless df/dÇ is 
zero there. This condition suffices to determine the unknown 
circulation T. Physically it amounts to saying that for a 
stream-lined airfoil the flow is smooth at the trailing edge. 
Geometrically stated, the rear rest-point on the circle in the 
auxiliary f plane must be mapped on the trailing edge of 
the obstacle in the z plane. 

10. The Blasius Formulas for Lift and Turning-Moment. 
If ds' denote the element of arc of any curve C" enclosing the 
contour of the obstacle, the components of the force per unit 
length exerted on the obstacle by the fluid are, from (23), 
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Fx = — <p {l(u2 + v2) - 2u(lu + mv)}ds', 
Cl 

Fv = — (p \m(u2 + v2) — 2v(lu + tnv)}ds', 
ci 

where (l, m) are the (x, y) direction cosines of the outward 
drawn normal to C'. Since l = dy'/ds' and m= —dx'/ds1, we 
readily find that 

(34) F s Fx - iFy = — £w2dz. 
C' 

This important formula, due to Blasius, enables us to write 
down at once Fx and Fy when the development of w2 near 
z— oo is known. 

Similarly the turning moment M} about an axis through 
the origin perpendicular to the (x, y) plane, of the forces 
exerted by the fluid on a unit length of the cylinder, being 
equal to 

(p {{xm — yl)(u2 + v2) — 2(xv — yu)(lu + mv)\ds\ 

ci 

is seen to be the real part of 

<p zw2dzy 
Cl 

that is, 

(35) M = R . P . ( - — <bzw2dz). 
CI 

In order to apply these results we turn to (32) and (33). 
Thus, from 

f = z ( l + - + 

we find 

'0+Ï+-)' 
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1 

7~ 
whence 

1 ai 1 1 2ai 

z zz f2 z2 z* 

iT / frfo\ 1 
. Veia |_ ( va*er*° ) — ^ 

2nrz \ 2TT / z2 

Multipliying this by 

dÇ ai 

dz z2 

we find 

w 
iT ( tTfo \ 1 

= - Veia (- ( Va2e~ia h <ziFe<a J (-
2TTS \ 2TT A2 

tFIV' 
^ 2 — y2e2ia _| 

- ) 1 

/ * 2 

7TZ 

/T2 iTÇoVe™ 
- ( + 2V2a2 - + 2aiV2e2i« — + 

\ 4 T T 2 TT 

From this expression it follows, by (34), that 

F = FX- iFy = - ipVTe™ , 

FssFa+iFv= ipVTer**. 

In other words the force per unit length exerted by the fluid on 
the cylindrical obstacle has the magnitude ±pVT and is per­
pendicular to the direction of flight, the sense of rotation from 
the direction of flight to the direction of the force being that 
of the circulation Y. See Fig. 2. This force per unit length 
is called the lift per unit length and is denoted by L, so that 
we have the Kutta-Joukowski formula 

(37) L = pVY. 

If the potential f unction ƒ were assumed uniform, T would be 
zero and there would be no force experienced by the obstacle; 
a result known as d'Alembert's paradox. The component 
of the force in the direction opposite to the direction of 
flight is called the drag and the drag per unit length is de-
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noted by D. We see, then, that the present theory gives 
D = 0, which is not in accord with experience. I t will appear 
in the next section that when account is taken of the fact 
that the length of the obstacle is not infinite this discrepancy 
can be removed. 

FIG. 2 

If we introduce the notation f0 = we£8, a i = — b2e2iy, where 
tn, ô, b and y are all real, it follows that 

M = pVTm cos (a + Ô) + 2irpbW2 sin 2(a + y), 

and hence the turning moment about the center f 0 = 0 of the 
circle in the auxiliary f plane, the two planes being supposed 
superposed, is 

(38) Mo = 2wpbW2 sin 2(a + y). 

11. The Circular Arc and Straight Line Profile. The re­
lationship ((Ç-l)/(Ç+l))2 = A(z-c/2)/(z+c/2), where A is 
any constant, maps a doubly covered circular arc through the 
points ±c/2 in the z plane on a circle through the points 
±1 in the f plane. In order that the mapping may be of the 
type (32) we must have -4 = 1, Z = c/4 and the mapping is 

(39) 2 = f + -i, f = 2; _ . ! _ + . . . , 
16f I60 
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it being necessary to take that one of the two determinations 
of £" which tends to <x> with z. If we denote by 2 e the angle 
of the circular arc, we have 

ic 
(40) fo = U ctn e = — ctn €, a 

4 
7T 

so that, by (31) 

(41) T = TTCV esc e cos (a — e), 

(42) Z, = 7rpF2c esc e cos (a - €) , M0 = (TTPC2F2 sin 2a) /8. 

The distance A of the lifting force L=pVT from the center 
of the auxiliary circle is 

h = Mo/L = c sin 2a sin e/[8 cos (ce—e)]. 

The particular case where e = x /2 is very important. Here 
we are dealing with a plane wing flying at an angle of attack 
a and we find 

(43) r = TCV sin a, L = ircpV2 sin a, h = c cos a /4 . 

The number c is the length of the chord of the wing and the 
expression for h indicates that the point where the line of 
action of L meets the chord, that is, the center of pressure, 
does not vary with a but remains constantly one-quarter 
of the length of the chord from the leading edge; for f 0 is now 
the middle point of the chord. The number CL = L/(%pV2c) 
is called the lift coefficient CL and we have the result that for a 
plane wing 

(44) cL = 27T s ina . 

For small angles of attack we may put 

= /csc€ = — esc 6, 
4 

16' 
7 = 0, 

(45) CL = 2TCOL. 
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so that there is a linear relation connecting CL and a. This 
prediction is verified by experience for angles of attack up 
to about 15°; but the factor of proportionality 2w is found to 
be about 40% too large. The reason for this discrepancy is 
that the wing is not infinite in length and a corrected ex­
pression will be given in the next section. 

12. Joukowsky Profiles and their Extensions. The relation­
ship between z and f which is expressed by (39) maps the 
exterior of a circle through the points ± c / 4 in the f plane 
upon the exterior of a doubly covered circular arc, with ends 
at the points ± c/29 in the z plane. A profile suitable for air­
foils is obtained if the same mapping relationship is applied 
to a circle through the point — c/4 but not through the point 
+ c/4 in the f plane. If the circle does not differ very much 
from the circle through the points ± c / 4 which maps into 
the doubly covered circular arc, the contour will have a 
rounded leading edge and a sharp trailing edge. A linear 
fractional substitution on a complex variable being re­
solvable into a translation, rotation, reflexion in a line and an 
inversion may be called a generalized inversion and it is evi­
dent that the mapping (39) may be written as 

c c 

(46) z' = f'2, z' = , f' = 
c c 

* + l f + 7 
Now a generalized inversion sends circles into circles (straight 
lines being regarded as circles through the point at infinity). 
The generalized inversion in the f plane, written down in 
(46), sends any circle through — c/4 in this plane into a 
straight line and this is sent by the square-mapping z' = t ' 2 

into a parabola in the z' plane. The profile obtained is then 
the generalized inverse of a parabola. Such profiles are known 
as Joukowsky profiles. Generalizations are obtained by 
writing, instead of (46), 
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C C 

Z f 
n In 

(47) *' = r'w, z' = > r = > 
z + — f + -

which is of the form (32) near z = <x>. This sends the exterior 
of a circle through the points ±c/(2n) in the f plane into 
the exterior of a region bounded by two circular arcs through 
the points ±c/n in the z plane, the angle between the two 
arcs being {2 — n)w. By taking a circle in the f plane through 
— c/{2n) but not exactly through + c/(2n) we obtain a profile 
with a rounded leading edge and a sharp trailing edge; it has 
the crescent formed by the two circular arcs as a "skeleton" 
just as the Joukowsky profile has the doubly covered circular 
arc as skeleton. The essential difference is that the trailing 
edge is now a double point of the contour and not a cusp as 
in the case of a Joukowsky profile. The new profiles are ob­
tained by applying a generalized inversion to the curves 
obtained by applying the nth power mapping z' = Ç'n to 
a straight line (passing nearly through the origin) in the f ' 
plane. 

C. T H E INDUCED DRAG OF A F I N I T E AIRFOIL 

13. The Formulas for the Lift and Drag. I t has been seen in 
the previous section that when the length of the airfoil is 
assumed infinite it experiences, owing to the circulation 
around it, a force at right angles to the direction of flight; 
in other words there is a lift but no drag. In order to give 
an explanation of this discrepancy between theory and 
experiment Prandtl advanced the idea that since an actual 
airfoil is not infinite in length the circulation around it may 
vary from point to point along its length. Under this hy­
pothesis the flow loses at once its two-dimensional character 
but it is assumed that the results obtained for the infinite 
wing may be used as first approximations; the fact that the 
circulation is not constant along the span of the airfoil 
introduces a correction to this approximation. To get an 
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estimate of the nature and amount of this correction we shall 
consider the case of a plane wing whose chord c is small in 
comparison with its length or span s and we shall suppose 
the airfoil sufficiently represented by its trailing edge (it is 
then called a lifting line). If we introduce a coordinate 
system with its origin at the middle of the lifting line 
(see Fig. 3), we may draw the x axis in the direction of 
flight, the z axis vertically downwards and the y axis along 
the lifting line. The circulation around the wing in any 
plane perpendicular to it is assumed to be a function T(y) 

•> dunt**** +f FtyUr 

of y. If then we consider the ring-shaped area bounded by 
two closed curves enlacing the wing, one in the plane y and 
the other in the plane ;y+A;y, there will be a flux of vorticity 
through this area, outwards from the wing, of amount 
— (dY/dy)Ay. (See (8).) We assume that this flux is con­
centrated at the trailing edge and is in the direction of the 
negative x axis, that is, is in the direction opposite to the 
direction of flight. Hence there will be a sheet of vortices 
trailing off from the trailing edge of the wing such that the 
strength of the vortices leaving an element Ay is— (dT/dy)Ay. 
Now if we have a single rectilinear vortex filament of strength 
ix in an indefinitely extended fluid which is at rest at infinity, 
the velocity distribution must be symmetrical around it and 
hence at a distance r from it the velocity must be of magni­
tude ix/(2irr). We assume tha t for a serai-infinite filament 
extending, as in the present case, along the negative x axis, 
the magnitude of the velocity at a point along the y axis 
distant r from the filament will be ju/(47rr). The direction 
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of the velocity will be that of the positive or negative z 
axis. This argument leads to the conclusion that the presence 
of the semi-infinite strip of trailing vortices induces at any 
point y of the lifting line a velocity w(y) in the direction of 
the z axis, tha t is downwards, of amount 

1 es/2 (dT/dy)y=y> 
(48) w ( y ) = - | K—t-l±±df. 

4?r J s/2 y — y 

This assumption of an induced downwash is the cardinal 
one of Prandtl 's theory for the finite wing. For an infinite 
plane wing flying at a small angle of attack a with uniform 
velocity V an easy evaluation of the indeterminate form 
df/dz shows that the relative velocity of the wind at the 
trailing edge has the magnitude V cos a and the direction 
of the negative chord of the wing and for small angles of 
attack a this can be regarded as of magnitude V in the direc­
tion opposite to the direction of flight. The net effect of com­
pounding with this relative velocity V the downwash w 
is to rotate the relative velocity through the angle t a n * - 1 ^ / V) 
and since w is merely a small corrective term this can be 
equated to w/V. This rotation of the relative wind, due to 
the sheet of trailing vortices, may be regarded as equivalent 
to a rotation of the direction of flight through the same 
angle, that is to a diminution of the angle of attack (which 
is the angle from the direction of flight to the chord of the 
wing). The diminished angle ae is called the effective angle 
of attack (as opposed to the geometric angle of attack a0) 
and we have the equation 

w 
(49) ae = a0 - —. 

On making the assumption that we can apply the results 
developed for the infinite wing, once we have replaced the 
geometric angle of attack by the effective angle of attack, 
we find that the lift per unit length L' at any point y on the 
span of the wing is given by 
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1 / w\ 

and on using Lf=pVY and equation (48), we have the 
equation 

c rsl2 (dY/dy)y=y> 
(50) T(y) = TcVa. - - ±J-J!lJLdy> 

4 J.,/2 y — y 

for the unknown function T(y). For a given airfoil both c 
and etc will be given functions of y\ if ceö is not constant the 
airfoil is said to be twisted. I t is apparent from (49) that 
even when aQ is constant ae may vary owing to the possi­
bility of a variable downwash w(y). This variability of ae is 
known as aerodynamic twisting of the airfoil. 

Since the lift experienced by an infinite wing is perpen­
dicular to the direction of flight and since the effect of the 
downwash is to decrease, in effect, the angle of attack by w/Vf 

the direction of the force at any point of the wing will be 
rotated through an angle w/ V from the direction of lift. I t is 
this rotation of the direction of the force which introduces a 
component in the direction opposite to that of flight. Once 
T(y) is determined from (50), the total lift L and drag D 
experienced by the wing are given by the expressions 

/

s/2 /»s/2 

Tdy, D = p I wTdy, 
-8/2 J-8/2 

(where we have identified the sine of w/ V with w/V). The 
drag D given by (51) is known as induced drag, it being a 
matter of experience that it is too small by a certain amount 
depending on the shape of the airfoil and known as the profile 
drag. 

14. The Solution of the Integral Equation and the Determi­
nation of the Airfoil of Minimum Induced Drag having a Given 
Lift. In order to obtain a numerical solution of (50) we make 
the substitution y = — (s/2) cos 0, so that 6 runs from 0 to ir 
along the span of the wing and imagine T(y) = F(0) developed 
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in a Fourier sine series (in order that there may be no dis­
continuity in T(y) at the wing tips, y= ±s/2, we must have 
T(±y/2)=0). Writing this series as Ai sin 6+A2 sin 20 
+ • • • , we see from the fact that T(y) is symmetric about 
the middle of the wing that A^ = Ai — A% — • • • = 0 . In 
actual calculations it will be sufficient to consider the four 
terms Ai sin 0+ A% sin 3Ö+^45 sin 5 0 + ^ 7 sin 70 in the de­
velopment of r(;y). A simple substitution in (50) and a 
knowledge of the fact that 

ƒ' 
c o s ncj>d(f) sin nd 

IT-

COS <j> — c o s 0 sin 0 

gives the equation 

(52) y^An sin n0 < sin 0 + n— > = TcVaa sin 0 
i I 2s) 

for the determination of the coefficients An. On substituting 
the values 0 — 7r/8, 0 = TT/4, 0 = 37r/8, 0 = TT/2, in this and drop­
ping the terms after A 7 we have four linear equations for the 
determination of the four coefficients Ai, Az, As, and AT. 

The coefficients An being supposed known, the expressions 
for the lift L and the drag D in terms of them follow readily 
from the formulas (51). We find 

(53) L = p F ^ x / 4 , D = — J^nA*, 
8 i 

so that the lift depends only on the first term in the Fourier 
development of r (y) =F(0). The downwash w is given by 

1 JL nAn sin n0 
(54) w(y) - - £ ——> 

25 i sin 0 

and the drag D by 

TO ™ 

(55) JD = — X > L 2 . 

It follows that Z> is a minimum, for a given value of L, when 
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the remaining coefficients As, A$, • • • after A\ in the Fourier 
development of F{0), are zero. In this case the downwash has 
the constant value A\/ (2s) and there is no aerodynamic 
twisting of the wing. Since 

T(y) =A1smd = A1ll-—-Y 

the graph of T(y) against y is an ellipse and the wing is said 
to be elliptically loaded. Since for an infinite plane wing the 
lift per unit length is, for a given angle of attack, propor­
tional to the chord c (see (43)), we may surmise that an 
elliptically loaded wing would be approximated to by one 
whose profile is approximately elliptical. A criterion of good 
design of an airfoil is that, for a given L, D should be as 
small as possible and so for a well designed airfoil we may 
assume the loading approximately elliptical. 

15. Comparison with Experiment. For a finite wing hav­
ing a constant chord c the ratio of the span 5 to the chord c 
is known as the aspect ratio. For a plane wing whose chord 
is not constant we first define the mean chord c as the quo­
tient of the area S of the wing by its span s; then the aspect 
ratio A is the ratio of the span of the wing to its mean chord. 
Hence A = s2/S. The lift coefficient CL of the wing is defined 
by the equation 

(56) cL = L/(hV*S), 

and there is a similar equation defining the drag coefficient. 
For an elliptically loaded wing we have, by (53) and (56), 

(57) CL . ^-M, 

while the downwash w has the constant value 

Ax V 
(58) w = — = —CL. 

2s TA 

Hence the diminution in the angle of attack, induced by the 
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trailing vortices, is CL/(TTA). The total lift L of the wing is 

cdy = 27cae'ipV2'S, 
-8/2 

so that CL = 2wae and we have 

(59) ag = ae + — = ae(l+^). 
IT A \ A J 

The aspect ratio of a wing is usually about 6, so that the lift 
formula for the infinite wing (using ag) might be expected to 
give a result which is too large in the ratio 4 :3 . This is con­
firmed by experience. 

The drag coefficient CD has, for an elliptically loaded wing, 
the value irpAf/8 (by (55)) so that, by (57), 

(60) cD = CL*/(TA). 

Hence a curve plotting D against L should be parabolic and 
this is verified experimentally; the actual curve obtained 
empirically indicates a relationship of the type 

(61) cD = cDo + CL%/(TA) , 

and CDQ is called the coefficient of profile drag. The formulas 
(59) and (61) are of importance because they enable us to 
calculate the effect of different aspect ratios; thus for two 
airfoils having the same lift coefficient 

(62) 
cL/l 1 \ , ct?(l 1 \ 

D. CONCLUDING REMARKS 

In the present address, I have tried to present in an ele­
mentary way some of those fundamental principles of modern 
hydrodynamical theory, which have proved useful in aero­
nautics, in the hope of interesting some of our hearers and 
readers in these questions. I t would be easy to point out 
many unsolved problems and indeed a casual reading of the 
previous sections will show that even in the most elementary 
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problems assumptions have continually to be made the 
legitimacy of which is at least not proved. We append a 
bibliography which has been deliberately restricted to those 
works which we would recommend to a student wishing to 
orient himself in the subject and to reach research problems 
as soon as possible. 
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