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z — w, take the limit as w approaches 0, and find ju'(z) = 
—X(22)/A4(s), the correspondent of p'(z) = — cr(22)/(74(s). 

If we wish to interpret this partial isomorphism in terms 
of Lucas' Un, Vn, where n is an integer, we may so do in the 
special case (cf. §1) in which # = 1. The derivatives X'(s), 
/ / (s) , • • • are then replaced by their equivalents in terms of 
U(z)f V(z) with z finally replaced by n. 
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The proof of M. Ragnar Frisch's theorem,f The absolute 
value of a symmetric, definite determinant of real elements is at 
most equal to the product of the absolute values of the elements 
of the principal diagonal, may be generalized to establish 
the following theorem of which the above is clearly a special 
case : The absolute value of a definite Hermitian determinant 
is at most equal to the product of the absolute values of the 
elements of the principal diagonal. 

An Hermitian determinant 

I An ' * * hin I 

(1) H J 
I hn\ ' • • hn 

is a determinant such that 

hrs = hsr, (r,s = 1,2, • • • , » ) , 

* Presented to the Society, February 23, 1929. 
t Sur le théorème des déterminants de M. Hadamard, Comptes Rendus, 

vol. 185 (1927), p. 124. This is not a new theorem; see Bachmann, Die 
Arithmetik der Quadratischen Formen, 1923, pp. 250-251. It is more the 
method of proof than the result that makes Frisch's paper of interest. 
Though Bachmann does not give the generalized proof of the present paper, 
his proof holds equally for it. 
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where hsr designates the conjugate imaginary of h$r. A 
definite Hermitian determinant is an Hermitian determinant 
such that the corresponding Hermitian form 

(2) ri — /^j IIYS'JCVA/S , \rlra — "s r / > 

is definite. The reader may readily verify the fact that an 
Hermitian form can never take on a complex value. An 
Hermitian form which is positive (negative) or zero for all 
values of the variables is said to be positive (negative) 
definite; in either case, the form is said to be definite. 

We can suppose the definite form (2) corresponding to 
the definite determinant (1) to be positive definite, for other­
wise we could consider the form 

ft — / j \ fîrs) OCfXg f \flrs Hsr) y 

which would be positive definite, and whose corresponding 
determinant would be equal in absolute value to H. And we 
can suppose the form to be non-singular, for if the deter­
minant were equal to zero the theorem would be trivial. 

The determinant 

*(X) 

An ~ X 

* 2 1 /?22 "~~" X • h2n 

Kl M>nn A 

may be expanded into a polynomial in X of degree n, where 
the constant term, H, is unequal to zero. Hence we can con­
struct* 

(3) F{\)s* 
[P(X)]2 - X 

e(x) 
where P(X) and QÇK) are polynomials in X and P(X) is pf 

* See Bôcher, Introduction to Higher Algebra, pp. 297-299. 
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degree less than n. As is well known,* the roots of the charac­
teristic equation, 

F{\) = 0, 

are all real and greater than zero. Note, then, in the above 
construction, that the coefficients in P(X) are all real. 

Let 

( hu - • • hin \ 

) 

hnl ' « ' hnn' 

be the matrix corresponding to H. By a fundamental 
theorem, f 

F(M) s 0. 
Hence, (3) gives 

(4) [P(M)Y s= if . 

I t is easy to show that P(M), being a polynomial with 
real coefficients in an Hermitian matrix, is itself an Her-
mitian matrix of the same order. Now let 

(
bn ' ' ' bin \ 

J, (ftr. « K). 

bnl ' ' ' bn 

Then from (4), 
^nn 

hu = jTjbijba, (i = 1,2, • • • , n). 

Whether the form is positive or negative definite, we still 
have 

n 

(5) mod hu = ^bifiij, (i = 1,2, • • • , ») , 

where by mod / ^ we mean the modulus, or absolute value, 
of hu. 

* See Kowalewski, Einführung in die Determinantentheorie, Leipzig, 
1909, pp. 280-284. 

f See Bôcher, loc. cit., p. 296. 
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I am indebted to Professor H. E. Bray for the following 
proof of Hadamard's Theorem. Given the matrix of real or 
complex elements 

ai 

« 2 
, OLi = (an , QJt2, • • • , Otin) , 

consider the matrix 

iSs 

f Pi ) 

ft 

I j8n 

where 

We note that 

Pi = «i> 

t - i 

7=1 

| 0 | = | « | . 

Choose the k) so that, for given i and all j <i, 

(fii M m Pa0n + fafa + • • • + fid,* = 0. 

That is, 

or 

kt = -
Hence 

(Pt.Pi) 

j - 1 j - 1 

which is real and negative. Now 
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whence 

0 ^ os*ft) = Tt,kf%f%M + Z£/(<*i,fr) 

+ Z*/(a<>0/)+ («<,*<) 
t - 1 

= («<,*<) - Yikfkf&iM ^ (*i,&i). 

But 

| « | -1 a| - | j 8 | - | j3 | - f[(fii9fo. 

Hence 

l« | - | a | S !!(«<>**)> 

or 

mod |a | g n[(<*<,a<)]1/2. 
t = i 

This inequality expresses Hadamard's Theorem: The ab­
solute value of any determinant is at most equal to the product 
of the norms (either horizontal or vertical) of the determinant. 
The quantities 

+ [("»,a;)]1/2, or + ( Ê a,,»,,) \ (i = 1,2, • • • ,*) , 

are called the horizontal norms of the determinant \a |, and 
a similat* definition holds for the vertical norms. 

Applying this theorem to the determinant \P(M) |, we 
get 

(6) mod|P(M)|2:g n ( Z > « / S A 

Equations (4), (5), and (6) give 
n 

mod H S I I ( m o d A")- <?.£.£. 
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