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ZERO-FREE REGIONS OF LINEAR 
PARTIAL FRACTIONS* 

BY MORRIS MARDEN f 

1. Introduction. The object of this paper is to determine 
simple regions in the plane which do not contain any zeros 
of the partial fraction 

,-1 z — a; 

when the a/s are complex constants. 
The case of real a/s has already been adequately treated 

by Gauss, Lucas, Jensen, and Bôcher in connection with their 
study of the derivative of a polynomial and the jacobian of 
two binary forms. In terms of $, their results may be stated 
as follows. 

(a) If all the ay's have the same sign, there are no zeros 
of $ outside of any convex polygon enclosing the points a,-. 
If all the dj, in addition, lie on the line-segment AB, there 
are no zeros of <i> except at points on A B $. 

(b) If all the a/s have the same sign, and the a/s are either 
real or in conjugate imaginary pairs, there are no imaginary 
zeros of $ at points outside of all the Jensen circles.|| In any 
Jensen circle containing k a / s , and not overlapping any other 
Jensen circle, there are at least k — 1 and at most k + 1 roots 
of <Mf 

* Presented to the Society, October 27, 1928. 
t National Research Fellow, at Princeton University. 
} The result of which this theorem is an immediate consequence was 

first stated by Gauss, (Werke, vol. 3, p. 112), in 1816, but rediscovered by 
Lucas (Comptes Rendus, 1868). This theorem, with reference to the 
derivative of a polynomial, was first stated by Lucas, Journal de l'École 
Polytechnique, vol. 46 (1879), p. 8. 

|| See §6 for definition. This part of the theorem was stated without 
proof by Jensen, Acta Mathematica, vol. 36 (1912), p. 190; proved by 
Walsh, Annals of Mathematics, vol. 22 (1920), pp. 128-144. 

Ï Walsh, ibid. 
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(c) If ]£/*ƒ = 0 and if all the a3' corresponding to positive 
<Xj and to negative a3- lie respectively in the non-overlapping 
circular regions G and C2, there are no zeros of $ at points 
outside of these regions.* 

2. Method. In the case of complex ce/s as in the case of the 
real, the zero-free regions of $ may be readily obtained when 
K(<&) the conjugate imaginary of <ï>, is interpreted as the 
resultant of all the vectors f 

Pi iy* 
fj = - and gj = — ; (j = 1,2, • - . , » ) . 

z — dj z — âj 
where j8,-+fy ,• = «,•. If we set aj — z = rjei$J\ we may write 

ft . y . 
j i = -±em+r) and gj = — e*w+W2). 

These equations tell us that, as vectors drawn from z, the 
first along the line a3z and the second perpendicular to this 
line, and having magnitudes contingent only upon r2- and a,-, 
the fj and gj are both independent of choice of axes. A zero-
free region of $ is then one in which the vector 

W ) = ÉC/V + gi) 
3=1 

or its component in any direction does not vanish. 
As the oij are here complex numbers, it is convenient to 

regard them as points in a separate a-plane. In this plane it 
may be assumed without loss of generality, due to the form 
of $, that none of the a/s lies at the origin. This is equivalent 
to supposing that, for all j , 

(1) lAl+U/l >0 . 
Since multiplication of $ by eki does not affect its zeros, any 

* Bôcher, Proceedings of the American Academy, vol. 40 (1904), pp. 
469-484. 

f The vector Fj =fj+gj may be regarded as the force on a unit particle 
at z exerted according to the inverse distance law by a particle of mass 
âj at ay. See Bôcher, loc. cit., p. 475, footnote. 
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theorem true about the zeros of $ for a given distribution D of 
the a/s is likewise true for any distribution D' obtainable from 
D by a rotation of the a-plane about its origin. Our theorems 
will however be stated only for simple distributions of the a / s , 
the understanding being, of course, that the same theorems 
hold for somewhat more general distributions. 

3. First Application. The simplest cases with complex a / s 
may be derived from the theorems of §1 by replacing points 
on the real axis by points on an arbitrary line through the 
origin. These cases we shall consider, however, by reason 
of the closing remark of §2, as already accounted for. 

Let us assume at first instead that all the points a}- lie 
in* the first quadrant of the a-plane and the corresponding 
aj in* the rectangle BiB^BzB^ 

If z is any point in the angle A4B4C4, 
the components of fk and gk parallel to 
A\A4 and &C2 will be, respectively, 

Hk = I fk i cos <j)k + \ gk J sin <t>k} 

Vk = I fk I sin <j>k — \ gk I cos 4>k, 

C* ^3 <f>h being the angle between fk and a 
parallel to A1A4. 

In order to locate the zeros of $ in the angle AJ$±C±, we 
shall try to find points at which ] C i ^ = ] C i F * = 0. 

As0^k^T/2fHk^0. Because of (l),iTfc = 0 for all k only 
in the following cases : 

I . fk = $k = 0, all k ; 

I I . gk = (j>k = 0, all * ; 

I I I . fk^^k — Oy some fe, gk~<t>k—7r/2 = 0, remaining k. 
In cases I and II , no zeros of $ turn up because the Vk are 

of the same sign and therefore ]T)J Vk 5^0. 
In case I I I , on the contrary, where some of the a,- lie on 

* In §§3, 4, 5, we shall use all our locative phrases "in, " "to the right of," 
etc. in the wide sense, including thereby the boundary points of the regions 
considered. In §§6 and 7, we shall revert to the strict sense of these terms. 
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the line B\B± and the corresponding a3 on the imaginary 
axis, and the remaining a3- lie on the line B%B± and the corre­
sponding cxj on the real axis, there is a possibility of ^[Vk = 0 
and of a zero of <f> at the point B^ 

Similar considerations hold in the remaining angles 
AkBkCjc- There are no zeros of $ in any of the angles AkBkCh, 
except perhaps at just one of the points Bk* Ify furthermore, all 
the ak lie on B\B±, there are no zeros to the right of C3C4 or to 
the left of CiC2. 

4. Corollaries. More elegant results for the case that the 
a / s are in the first quadrant can now be obtained if the cor­
responding aj are required to lie in a circle C of radius R. In 
the concentric circle C' of radius 21I2R, a square 5 can be 
inscribed which will circumscribe C and which, when 
suitably chosen, will include in an angle AkBkCk any point 
outside C'. Consequently there are no zeros of $ outside of C''. 

If n = 2, "outside of C" must be taken in the strict sense. 
If #1 and a*i are situated on C, TTR/2 units apart, S may have 
#i on one side and a2 on the adjacent side. Case III of §3 
would then permit a zero to be on C", as the example 

i 1 
; + -«O 

Z — % 2 — 1 

with the unit circle as C, shows. 
If the points a3- just considered are all on the line-segment 

AB, $ will have a larger zero-free region. On AB as diagonal 
a rectangle R can so be constructed as to include in an angle 
AkBkCk any point outside of the circle T having AB as di­
ameter. Outside of T there are therefore no zeros of $>. 

Again "outside of T" must be given a strict meaning when 
n = 2. If #i and a2 are at A and B, case III arises with its 
possibility of a zero on T, as for instance in the example 

1 i + - 0 , 
2 - 1 2 + 1 

where A: ( - 1 , 0) and B: (1, 0). 
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5. Other Applications. By essentially the methods of §3, 
the following results may also be deduced : 

(a) Suppose the a3- to consist of two groups G\ and G2, the 
former situated in the first quadrant and the latter in the second 
quadrant of the a-plane. If the a3- corresponding to Gi and G2 lie 
respectively in the angles A1B1C2 and AJ$±Cz, there are no zeros 
of$in the strip C1B1B4C4, save perhaps upon the segment B1B4. 

The exceptions may occur only if Gi = Gia + Gic and 
G2 = G2a + G2c, where G\a and G2a have their a/s on the 
imaginary axis, G\c and G2C their a / s on the real axis, and 
Giay Gici G2a, and G2c have their a/s respectively on the seg­
ments A\Bly BlC2, A4B4, JB4C3. 

If Gic = G2c = 0 (that is, G i c and G2C contain no points), 
any point of B1B4 may be a zero of <ï>. 

If Gia'GuT^O and G2C = 0, the point Bi is the only possible 
zero of $ on B1B4. 

If Gic = 0 and G^aG^c^O, the point B* is the only possible 
zero of <£ on B\B^ 

If the lines C1C2 and C3C4 are coincident, we shall exclude 
the case Gia = G2a = 0, but include the cases 

Gia = 0 and G^a •G2C
!=0> 

G2o = 0 and Gia-Gic = 0, 
and 

Gio • G\ c • G2a • G2 c7^ 0, 

in which cases Bi is the only possible zero of $ on B1B4. 
(b) Suppose the a3- to consist of four groups Gk(k = 1,2,3,4), 

the group Gk being in the kth quadrant of the a-plane. If the 
a3- corresponding to Gk lie in the angle AkBkCk, there are no 
zeros of <£ in the rectangle B\B2BiB±. 

We are supposing no two sides of BiB^BiBi to coincide. A 
degenerate case of interest is, however, one in which A\A± and 
A 2A 3 are coincident and the aj corresponding to Gk lie on 
A1B1 if k = 1 or 2, and on AJ5± if k = 3 or 4. Then, if not all 
the a / s lie on the real axis, there are no zeros of <£ on the 
segment B1B4. The theorems of (a) and (b) also hold for 
# = oo provided $ is absolutely convergent in the above-
mentioned zero-free regions. 
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6. A Jensen Case. So far no restrictions have been placed 
upon the behavior of 3> for real values of z. In this section we 
shall assume, in order to make <£ real on the real axis, that the 
a3 and the corresponding a3 are both real or both in conjugate 
imaginary pairs. We shall also suppose the a3 corresponding 
to an a3 in the upper half-plane also to be in the upper half-
plane, and vice-versa. Furthermore, we shall limit the a3 to 
the first and fourth quadrants of the a-plane.* 

Let us construct in the s-plane the circles (the Jensen 
circles) having as diameters the line segments joining pairs of 
conjugate a3, and the indefinite lines (the Jensen lines) 
through the pairs of conjugate a3\ If we denote by R the 
region consisting of all points simultaneously outside of all 
the Jensen circles and to the left of all the Jensen lines, we 
may define R by the inequalities 

(x - b3)
2 + y2 - c3

2 > 0, x - bj < 0 ; 

all j corresponding to imaginary a3- = b3+ic3-. 
In the sum * let us discern two types of terms, one corre­

sponding to real a3: 

Pi Pi[(* - b3) -iy] 
h-7=Tr («~b3)

2
 + y2 ' < « < - * + ' »> ' 

and the other corresponding to a pair of conjugate a3-: 

Pi + hi Pi ~ iji 

z — (bj + tCj) z — (b3 — ic3) 

The latter has as component parallel to the y-axis: 

= - 2y[p3-{(x - b3)
2 + y2- c? } - 2c3y,(x - b,)] 

{(x-b3)
2+(y-c3)

2}{(x-b3)
2+(y + c3)

2} ' 

As j3/^0, c>0, and 7 > 0 , we find in R 

sgn 7(/i) = sgn 7(/2) = - sgny. 

The components of h and /2 parallel to the y-axis will there-

* See the footnote to §3. 
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fore not vanish at points in R off the real axis. That is to say, 
there are no imaginary roots of $ in R. 

The question of the real roots of $ in R may be easily 
settled through a study of the real function $ on the real 
axis. Again we shall separate the terms corresponding to 
real aj from those corresponding to pairs of conjugate a3: The 
first 

Pi u dSx pj 
Sx = has = ; 

x — bj dx (x — bj)2 

the second 

Pi + hi , Pi - ili 
02 = ; 1 ; — f 

x — (bj + tCj) x — (bj — icj) 

dS2 2Pj{c? - (s - bjY) + 4cj7j(x - bj) 

dx ~ { ( * - b,)* + c?}* 

Therefore d$/dx<0 in R. In addition, as x moves to the 
right from one aj to the next a/, $ changes from + 00 to — 00. 
In other words, any interval of the real axis in R not con­
taining any aj has at most one root of $ ; between two suc­
cessive aj in R, there is exactly one root of $ . In short, if the 
number of aj in R is k, the number of real roots of 3> in R is k> 
k-l,ork + l* 

The above equations also allow us to deduce at once the 
results for the case in which the aj corresponding to real a,- lie 
on the positive real axis, and the remaining a,- are in the 
second and third quadrants of the a-plane. The above theo­
rems will hold for this case if R in these theorems is replaced 
by K, the region consisting of all points simultaneously inside 
of all the Jensen circles and to the left of all the Jensen lines. 
(K may not contain any points.) 

These theorems will also be valid when n = 00 provided 
* converges uniformly in any closed region in R or K not 
including any points aj, and all the imaginary aj lie to the 
right of a fixed line parallel to the ;y-axis. 

* E. B. Van Vleck has an unpublished proof of Jensen's theorem which 
uses similar analysis. 
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7. The Function 77(2). As a final application particularly 
of the methods of §6, we turn to the function 

1 {?{*) ) 

z l f (s) J 
2 1 °° 1 oo i 

z——7+2; Z2 0 - 1 *_i *(« + 2k) " pn(* - pn) 

where Ç(z) is the Riemann zeta function, and thep n its zeros. 
Concerning the pw, it is known* that 

p-w = pn 

0 <R(Pn) < 1, (al l») , 

R(Pn) =h for | / ( P w ) | ^ 3 0 0 , 

and that p = J ± ü a , K = 14.13472(5), are the nearest pn to the 
real axis. 

Let us draw a circle of radius K, center at (1/2, 0) and de­
note by S the interior of this circle to the left of the imaginary 
axis. Then in 5 there are no imaginary zeros of rj(z). In each 
of the intervals (0, - 2 ) , ( - 2 , - 4 ) , ( - 4 , - 6 ) , ( - 6 , - 8 ) , 
( — 8, —10), and ( — 10, —12) of the real axis there is exactly 
one zero, and in the interval (—12, \ — K) there is at most 
one zero of 17(2). 

THE UNIVERSITY OF WISCONSIN 

* See Hutchinson, Transactions of this Society, vol. 27 (1925), p. 49, 
and references therein. My attention was called to the logarithmic deriva­
tive of the zeta function by C. E. Hille. 


