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THE INVERSE PROBLEM OF THE CALCULUS OF 
VARIATIONS IN A SPACE OF (» + l) DIMENSIONS* 

BY D. R. DAVIS 

1. Introduction. Among the various types of inverse 
problems of the calculus of variations are those of Darboux, 
Hamel, Hirsch, and Kürschak.f Darboux discussed the 
problem of the plane showing that for a given equation of 
the form yff = <l>(x1 y% y') there exist an infinity of functions 
ƒ(*> y> yf) such that the integral ƒ£ƒ(#, y, yf)dx taken along 
one of the integral curves of the given equations furnishes 
a maximum or minimum. Hamel found the general type of 
integral whose minimizing arcs are straight lines. Of the last 
two Hirsch considers an equation of the type F(x, y, y\ 
y"> • • '9y

in)) =OandKürschak generalizes this by introducing 
n independent variables. In both of these cases it was found 
that a necessary and sufficient condition for a given equation 
of the type considered to give a solution of a problem in the 
calculus of variations is that it have its equation of variation 
self-adjoint. No such restriction was found in Darboux's 
problem; however, it is well known that every differential 
equation of the second order for plane curves may be trans
formed into one whose equation of variation is self-adjoint. 

The inverse problem of the calculus of variations for 
three-dimensional space is treated in my thesis.J It is the 

* Presented to the Society, San Francisco Section, June 2, 1928. 
t Darboux, Théorie des Surfaces, vol. 3, §606. 
A. Hirsch, Ueber eine Charakteristische Eigenshaft der Differential-

gleichungen der Variationsrechnung, Mathematische Annalen, vol. 49, p. 49. 
J. Kürschak, Ueber die Transformation der partiellen Differential-

gleichungen der Variationsrechnung, Mathematische Annalen, vol. 56, 
p. 155. 

G. Hamel, Geometrieen, in denen die Geraden die Kurzesten sind, Mathe
matische Annalen, vol. 59, p. 255. 

% Inverse problem of the calculus of variations in higher space, written 
under the direction of G. A. Bliss, University of Chicago, 1926. Published 
in the Transactions of this Society, vol. 30 (1928), pp. 710-736. 
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purpose of this paper to discuss the corresponding problem 
for a space of (n+1) dimensions. 

2. Fundamental Properties of given Differential Equations. 
Let us consider a system of n differential equations of the 
form 

(1) Hj(x,yi9yl ,yl') = 0, (ij = 1, • • • , ») , 

whose solutions are 

y< = y<(*); 

these have the derivatives y{, yl' with respect to x. 
Under the hypothesis tha t the equations of variation of 
the given equations (1) form a self-adjoint system,* a 
function/(x, yi, • • • , yni y{, • • • , y») can be determined 
such tha t the given equations are the differential equations 
for the solutions of the problem of minimizing the integral 

f(x,yu • • • , yn,y{, • • • , ?»)<**• 

The self-ad joint conditions which are needed here are 
summarized in the following theorem which is fully treated 
in the reference cited below, f 

T H E O R E M . Necessary and sufficient conditions that the 
system of differential expressions 

Ji(u)^Aik(x)uk+Bik(x)u^ +Cik(x)u£', 0 ' , £ = 1 , 2 , • • • , » ) , 

shall be self-adjoint are 

Lsik =s (ski) 

Bik + Bki = 2Cik, 

Aik = A hi — Bki + Chi. 

In the above and following expressions, the notation of 

* This condition is also necessary; see Theorem II of my thesis, loc. 
cit., or J. Hadamard, Leçons sur le Calcul des Variations, p. 156. 

t See my thesis, loc. cit. 
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tensor analysis is used, tha t is, whenever two subscripts 
are alike in two factors of a term, say of the form AikUk, 
then the expression represents a sum with respect to the 
repeated index. 

The equations of variation of the system (1) are 

(3) Hivru!' + Hwuf + Hiy.u; = 0. 

For this system the self-adjoint conditions of the above 
theorem give respectively the following relations : 

Hiyj>> = H3Vi» , 

(4) EM + Hiyj, = 2(Hivj„Y, 

Hjy. = Hiyj ~ (Hiy^Y + (ffty")", 

which must be identities in x, y/, yl , yl". 
The second set of relations (4) assert tha t each of the 

functions £T»(i = l, • • • , « ) is linear in yl' (& = 1, • • •, w), 
since terms in yi" do not occur in the first members. 
Therefore, the given functions (1) may be written in the 
form 

(5) Hi = Mi(x,yi, • • • , yn,y{, • • • , yi) 

+ Pi,i*,yi, • • • , yn,y{, • • • , yi)y". 

In this notation the first of relations (4) becomes 

(6) Pa = Pit. 

From the last two of relations (4) we have 

(7) # w ~ HiVj = [(HiVi»y — H{Vi>]' = hiflivi' "- Hiyj')'. 

Since the coefficient of yl" in the expansion of the second 
member of this equation must vanish we have the 
following conditions : 

\°) HjVifyk't = HiVi>yk". 

In the notation of (5) these relations become 

(9) Pjkvi' = PikVj'. 

From these conditions and (6) it follows tha t the expression 
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Pity remains unchanged under all permutations of the 
indices^', j , k. 

From (42) with the aid of (5) and (9), we obtain 

MiVj> + MiVi> = 2Pij - Pikvj'y'k - Pjkvi'yk 

= 2(P</. + Pu,ky£ + PiMyi') 

— Pjky/y" — Pjkvi'y" 

= HPii. + Piinyi). 

By applying relations (7) to the expressions for Hi given 
in (5) and with the use of (9), we get 

(11) MjVi - Miyj = (Pikyj - P»M' + \{MM - Miy,)'. 

If these equations are to be identities in the variables in
volved, we must have 

(Ha) 

f Piky, - PjkVi = l(Mivi' - MjVi')Vk>, 

M,-yi - Miyj = \(Mivi' - Af<y/)« 

The first of these systems may be obtained from (10) with 
the use of (9) but the second is an independent system of 
relations which must be satisfied. 

The above results may be summarized as follows : 

T H E O R E M 1. If a system of differential equations of the 
second order 

Hi(*>yi, • • • , yn,y{, • • • , y» ,y", • • • , y") = 0, 

0" = 1, • • * , n), 

is to have equations of variation which are self-adjoint along 
every curve yi^yiix), then it must have the form 

Hi = Mi(x,yu • - • , yn,y{ , • • • , yi) 

+ Pij(x,yu • • • , y*,yl, • • • , yn )y", 

(i, j= 1, • . • , n) where the functions Mi and Pa satisfy the 
conditions 
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(12) 

Pu - Pu ; Pjkvi' = Pikvj', 
MiVi> + MiVi> = 2{Piix + PijVkyl), 

MjVi - MiVj = h(MiVi> - Miyj')x 

+ i(M,w - MiVj>)Vky£ , 

identically in xy y^ yl. 

3. Determination of the Integrand f of the Integral I. For 
a system of equations Hj = 0 which has the form indicated 
in the above theorem with coefficients satisfying (12), it is 
possible to determine the integrand ƒ of the integral I in (2) 
to an arbitrary function of x, yi, • • • , yn such that i3", = 0 
are the equations of its minimizing curves. 

A function g(x, yu • • • , yn, y{, • • • , yi. ) will first be de
termined satisfying the relations 

(13) g,w = Pii} (ij = 1, • • • , n). 

The relations (122) are necessary and sufficient conditions 
for the integrability of system (13). The function g will 
be determined by the integral 

J» Vi' t • • • *Vn' 

Lidy{ + L2dyi + (- Lndyl , 
l / i n . * • • . l /«n 

where 
. 1 / 1 ' . 

Pudyl + Pndyi + • • • + Pudyi , 

Pmdyl + Pntdyi + • • • + Pni%dyl. 
t / ' l O . ' " . V ' w O 

If g is a particular solution of the system (13), the most 
general solution is given by the formula 

(14) ƒ - g(x,yi, • • • , yn,y{, • • • , y») + <*,yu " ' . y » ) 

+ fa(*>yif • • • >y*)yi, (* - l* • • • , »), 
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where a, bu • • -, bn are arbitrary functions of x1 yu • • •, Jn* 
If the given equations are identical with the Euler-

Lagrange equations for the integral (2) then the equations 

(15) 7-(/w') ~ ƒ« = Mi+ PtiyS' 
ax 

must be identities in x, 3>i, • • • , yn, yi , • • • , 3^', ^ I " , 
• • • • » 3%»". The value of ƒ given in (14) must now satisfy 
the system (15); thus we have 

d 
—(gvi' + **) - (gVi + aVi + bkViy£) = M< + Payi', 
da; 

which readily reduce to 

(16) (bix - aVt)+ibiyk - J*,,)?*' = Mi + gVi -\gVi>x - &,<'„*?/. 

If these equations are to be identities i n X) yi, * • • » ŷ*i> 
y / , • • • , yn the expressions on the right must be inde
pendent of y I and linear in yi when k^i. Upon dif
ferentiating the second members of (16) with respect to 
yi one obtains 

MiVi' — gvi'vi'x ~ gvi'Vi'vhyk , 

which by conditions (123), for i=j, are identically zero. 
Differentiation with respect to yj C/Vi), gives 

With the aid of (13) and (123) this system reduces to 

(17) biVi - 6/l/t. = | (^"*v - MM) + gViVj' - gVi>vr 

If in these equations we again take the partial derivatives, 
with respect to yf9 the functions on the right yield the 
following expressions: 

(18) §(MiVj, - M ,„.)„. + Pim - PijVj • 

By setting &=j in the first system of (110) we see tha t the 
expressions (18) are each identically zero. Thus we have 
shown tha t the second members of (16) are, as indicated 
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by the expressions on the left, independent of y% and linear 
in yu for k^i. 

Upon substi tuting the values of the first members of 
(17) in (16) we see tha t the system (16) which are partial 
differential equations for a, b\, • • •, bn may be replaced by 
the following: 

( 19Ï hjVi ~ bivj = gvi'Vj ~~ gviVi' ~~ ^Mivi' ~~ Mjv^ > 
b,x - aVj = Mj + gyj - gVi'X - gvm>yi 

~ h(Mhk> - Mkyj>)y{. 

In (19i) there are n(n —1)/2 equations and in (192) # 
equations in the n+1 variables x, 3>i, • • • , yn. The de
terminant of the matrix of the functional expressions on 
the right in (19i) is skew symmetric. Solutions for the 
system (19) exist if the total i ty of n(n + l)/2 equations 
are compatible. 

We shall now prove the following theorem. 

T H E O R E M 2. A necessary and sufficient condition that 
there exist a solution for a system of differential equations 
of the form 

(20) bjVi — biVj = <t>ijy bjX — aVf = 0 / , 

where a, <£»•ƒ, &,-, 0/, (i, J = l , 2, • • • , n)f are functions of 
%, yi> ' ' ' j yn and <f>ii= —0/i, is that 

(21) <j)ij x — Ojvi + Oipj = 0 

identically in x, 3>i, • • • , yn for every pair of values of i andj. 

T h a t the condition is necessary is evident. In order to 
prove tha t it is also sufficient consider the given equations 
(20) for fixed values of i and j , namely, i = p, i = g. For 
these values of i and j system (20) gives 

\ZZ) Oqyp Opyq ^ <Ppq} &yq OqX
 == "q y 0pX Üyp

 =S "p* 

Now since 
<Ppqx VqVp I Opyq ~ 0 , 

identically in x, yPi yq, there exists a solution, say a, 
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bp, bq, of equations (22)*. Now let j = r, where r is any other 
value of j than q. The substitution of the functions a, 
bPf br in the equations for i = p, j = r gives 

(23) brVp — bPVr = <t>pry aVr — brx = — 0r> bpx — aVp = 6P* 

Since the last of these equations is identical with the last 
equation of (22), it is satisfied by the functions a, bp. 
Solving for the derivatives of br in the first two equations, 
we obtain 

brVp = <t>pr + bPVf, Kx = Or + dyry 

which are compatible provided tha t 

<t>prx + bpVrx = Oryp + 0>VrVp' 

By employing the last of equations (22) this equation 
becomes 

<f>prx — 0ry„ + Qpvr = 0 , 

which is identically zero by hypothesis. A similar con
dition prevails for i = s,j = g, where 5 is any other value of i 
than p. I t follows tha t the remaining (n + 3)(n — 2)/2 
equations are compatible for a solution of the given equa
tions for i = p, j = q* Hence, there exists a solution of the 
given system. 

System (20) is identical with (19) if (j>n and 0/ represent 
the second members of (19) respectively. Relations (21) 
applied to the second members of (19) give the following 
system : 

(24) 0 = (Miyj - Miy%) - \{Miyi> - MiVi,)x 

+ h(MjVk> - MhVj.)Viyl + \(MhVi' - MiVk>)Vjyi. 

These equations are identities in x, yi, • • • , yn, y{, • • • , 
yn , provided the following system is identically zero : 

(25) (MM - Mky.>)Viyk' + (MkVi> - Miyh>)yiyi 

- (Miyi> - Miyj.)Vkyk
f = 0, 

* See H. Weber, Die Partiellen Differ'entialgleichungen, vol. 1, pp. 221, 
etc. 
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which is obtained by replacing the first two expressions in 
parenthesis of (24) by their value obtained from the last 
system of (12). 

I t is readily verified tha t those terms of (25) for which 
any two of the indices i, j , k are equal vanish identically. 
I t remains to show tha t the terms for which k^i^j will 
also vanish. For this purpose consider the last of the self-
adjoint relations (12). Let this system be written succes
sively for j = p, i = r;j = q, i = p; j = r, i = q. If these three 
equations are differentiated with respect to y I, yi, y J 
respectively and the results added, we obtain equations 
(25) except for the factor y£. Hence, equations (25) are 
identically zero in x, yu • • • , yn, y{, • • • , y I. 

Since the conditions of Theorem 2 are satisfied there 
exists a solution of the system (19). Let a, biy bj be a 
particular solution of system (19); then the most general 
solution will be 

a{x,yu • • • , yn) + u(x,yu • • • , yn), 

(26) bi(x,yi9 • • • , y») + Vi(x,yi9 • • - , ? » ) , 

bi(*>yi, • • • 1 y») + */(*,yi, • • •>?»)> (* < i ) , 

where the functions u, Vi, v,- satisfy the relations 

(27) Vjy. - Viyj = 0, Uy- ~ VjX = 0, Vix — Uy{ = 0, {l>j) . 

The general solution of the system (19) may now be written 
in the form 

a(x,yu • • • , yn) + u(x,ylf • • • , yn), 
(28) 

bk{xyyu • • • , yn) + vk(x,yu • • • , yn), 
( * - 1, • • • , n). 

Relations (27) are necessary and sufficient conditions 
that the expression 

u + vky£ , (k = 1, • • • , n), 

should be the total derivative of an arbitrary function 
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t(x* yu • • • , yn). In view of (28), the integrand ƒ of (14) 
takes the form 

(29) ƒ = g(x,yu • • • , y„, y{ , • • • , y„') + a(x,yu • • • ,y») 

+ öfc(x,yi, • • • , yn)y£ + —t(x9yi, • • • , y»), 

where a, i i , • • • , bn are solutions of the system (19) and / 
is an arbitrary function of x, yi, • • • , yn. 

T H E O R E M 3. If a system of differential equations of the 
form 

Hi(x>yi> - • • , y», y / , • • • , y» , y " , • • • , y»') = 0, 

(i = 1, • • • , n), 
has equations of variation 

Hiyj»uj' + Hiyj>uj + Hiy.Uj = 0, 

which form a self-adjoint system along every curve y* = y »(«;), 
then there exists an integral of the form 

f(x,yi, • • • , yw, yi , • • • , yn
;)<te 

having the equations Hi(x, y3; y / , y / ; ) = 0 as i/s Euler equa
tions. The most general such integral has an integrand 

f = g(x,yi, • • • , y», yi , • • • , y») + <*(*,yi, • • • , yn) 

d 
+ ^ ( x , y i , • • • , yn)y£ + —t(x,yu • • • , y») 

a# 

where g is a particular solution of (13), a, &i, • . • , 6n are 
a particular solution of system (19), and t is an arbitrary 
function of x, yu • • • , yn. 
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