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SINGULAR MANIFOLDS AMONG THOSE OF 
AN ANALYTIC FAMILY* 

BY O. D. KELLOGG 

1. Exceptional Occurrence of Singular Manifolds, This 
note is concerned with the following theorem. 

Let R denote a closed region, consisting of an open continuum 
of the space of the n complex variables Z\, z2l • • • , zn, together 
with its boundary points. Let the functions Fi(z\, z2, • • • , zn), 
i = l, 2, • • • , m, m^n, be analytic at all points of R. Let 
Mk denote the matrix 

(i= 1,2, • • • , * ) , 

(j= 1,2, • • • , » ) . 

We assume that Mm is of rank m at some point of R. 
Consider the manifold defined by the equations 

(A) Fi(Zi,Z2, ' • • , Zn) = Ci, • • • , Fm(Z\,Z2, * • • , Zn) = Cmy 

where c\, c2, • • • , cm are complex constants. 
For all but a finite number of values of c\ the manifold de­

fined by the first equation (A ) contains no points in R at which 
the rank of Mi is less than 1. 

If c\, c2, - - - , Ck have been chosen so that the matrix Mk is of 
rank k at every point in R on the manifold defined by the first 
k equations (A), then f or all but a finite number of values of 
Ck+i the manifold defined by the first k + 1 equations (A) con­
tains no points in R at which the rank of the matrix Mk+i is 
less then k + 1. 

Thus, if c\, £2, • • • , cm are chosen in order, each avoiding a 
certain finite set of values, the manifold defined by the equations 
(A) will have no singular points in R."\ 

* Presented to the Society, March 29, 1929. 
t As far as I know, a proof of this general theorem has not been pub­

lished. Birkhoff and I gave it for the case in which the functions Fi are 
polynomials (Transactions of this Society, vol. 23 (1922), pp. 97-98), and 
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By a singular point of a manifold, we mean a point at 
which a unique tangent linear manifold of the same order 
does not exist. A sufficient condition that a point of the mani­
fold defined by the equations (̂ 4) be not singular is that the 
rank of the matrix Mm is m at that point. That the condition 
is not necessary may be seen by the example 

zx2z2
2 - s3

3 = 0, SiW + s 3
3 = 0. 

The manifold defined by these equations consists of the two 
intersecting straight lines Zi = Zs = 0 and £2 = £3 = 0. Its only 
singular point is at the origin, yet the rank of M2 is less than 
2 at every point of the manifold. 

I t is not stated in the theorem that the values of the Cj 
characterizing singular manifolds are finite in number. In 
general, the value of ck+i to be avoided, if the resulting mani­
fold is to be non-singular, is a function of the c3- previously 
chosen. Thus in the case 

Z\ — Z2Z3 = C\y Zl = C2, 

the value of c2 to be avoided is c\. What is the case, is that 
among the <*>2m members of the family defined by (A), there 
are at most 00 2m~2 singular manifolds, a precise interpretation 
of this statement being given in the theorem. 

2. Needed Results in the Theory of Analytic Functions. We 
attach our considerations to the study of simultaneous 
equations in the second volume of Osgood's Lehrbuch der 
Funktionentheorie * where we find a theorem, of which the 
part we need may be stated as follows : 

Given a system of simultaneous equations 

Gi{Z\,Z2, ' ' • , Zn) = 0 , • • * , Gi(Zi,Z2, ' ' ' , Zn) = 0 , 

where G&(zi, z2, • • • , sn), k = l> 2, • • • , I, is analytic at the 
point (a) = (#i, #2, • • • , an) and vanishes there, but does not 

Morse gives a proof for the case w = l in a paper in the April number of 
the American Journal of Mathematics, vol. 51 (1929). The theorem is 
apparently useful; in addition to its role in the two papers just cited it has 
served me at several points in a forthcoming book on Potential Theory. 

* Leipzig, 1st éd., 1924, 2d éd., 1929, Chap. I I , §17. 
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vanish identically. The solutions of this system in the neigh­
borhood of {a) consist either of the point (a) alone, or of one or 
more manifolds g. The context makes it clear that the number 
of these manifolds is finite. 

The essential property of the manifolds g for our purposes 
is that any two points of any one of them can be connected by a 
curve 7, lying in the manifold, and analytic except at a finite 
number of points. 

We begin, in establishing this property, with a pseudo-
algebraic manifold @ defined by the irreducible equation 

(1) H(w9u1,u2y • • • , up) = w* + Exw»-1 + h JSM = 0 

and the inequalities \ui \ <h, where h is a suitably restricted 
positive number. The coefficients Ej are power series in the 
variables Ui convergent for \ui \ <h', hf>h, vanishing at the 
origin 0(u\ = u2 = • • • =up = 0). 

If P'(w', u{, u2', • • • , up
f) is any point of ©, and if in the 

equation (1) we set U\ — u{t, u2~u2't, • • • , up = Upt, the re­
sulting equation defines w as an algebroid function of /. If 
the latter equation is reducible, we select the irreducible 
factor of the left hand member which vanishes for w~w' 
when / = 1, and equate it to 0. The discriminant of the result­
ing equation vanishes at most a finite number of times on the 
real interval (0, 1), and hence from the branches of the 
function w oi t there can be selected a (complex) single-
valued function w=f(t), which is continuous on the closed 
interval (0, 1), analytic except at a finite number of points, 
and which reduces to 0 for 2 = 0, and to w' for / = 1. Then the 
curve 

(7') w = ƒ(/), U\ = u{t, • • • , Up = « / / , 0 S t S 1, 

lies in ©, connects P' with 0, and is analytic except at a 
finite number of points. By means of a curve consisting of 
two such parts, any two points P ' and P " of ® can be 
connected. 

We now consider a set of functions Wi, w2, • • • , wa of 
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Ui, u2, - • • , up, belonging to the pseudo-algebraic manifold 
©, that is, having the following properties: they are one-
valued and continuous on ®, and analytic at every point of 
@ at which the discriminant of the equation (1) does not 
vanish; the function aiWi+ • • • +aawff of the Ui has, for non-
specialized values of the parameters a\, • • • , aff, branches, 
corresponding to the branches of w, no two of which are 
identically equal. Then the set of points of the space of 
(wu Wi, - • • , w<r, U\, U<L, - - - , Up) which correspond to the 
points (w, U\, - - • , Up) of @ constitutes a manifold g. The 
most general manifold g is either one defined in this way, or 
else one derived from it by a non-singular linear transfor­
mation of the variables. As such a transformation does not 
change the essential character of the curve 7, we may con­
fine ourselves to the manifolds g as first defined. 

The functions Wi, w2, - - - , wa are pseudo-algebraic, and 
as they are one-valued and continuous on ©, they assume 
at O unique values wi0, w2o, • • * , wa0. If p'iwi , w2', • • • , 
wa', u{, u{, • • • , u^) is any point of g, there corresponds 
to it a unique point P ' of @, which is connected with 0 by a 
curve 7 ' . Just as the function w=f(t) was determined, we 
may determine from among the branches of W\, a single-
valued function Wi=fi(t), continuous on the interval (0, 1), 
analytic, except at a finite number of points, and reducing to 
Wio for / = 0 and to w\ for / = 1. When this and similar func­
tions have been determined for W\, • • • , wa, we shall have a 
curve 

(7) Wi = fi(t), • • • , Wa = f*{t),Ui = Mi'/, • • ' , Up = Up't, 

0 ^ t^ 1, 

from two of which can be constructed a curve of the re­
quired character, connecting any two given points of g. 

3. Proof of the Theorem. Let (a) be any point of R. Then 
in the neighborhood of (a), the solutions of the equations 

dFx dFi dFi 
(2) = 0, = 0, • • • , = 0, 

dzi dz2 dzn 
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(not all of which are identically satisfied, since Mm is of rank 
m at some point of R), if there are any, consist, by Osgood's 
theorem, either of the point (a) alone, or of a finite number of 
manifolds g. Along an analytic arc of a curve 7 joining any 
two points of such a manifold, dFi = 0. It follows that Fi is 
constant on each such manifold, so that the number of values 
of Fi corresponding to solutions of the equations (2) in the 
neighborhood of (a), is finite. By the Heine-Borel theorem, 
the same is true for the whole region R. Hence for all but a 
finite number of values of C\ the manifold defined by the 
first equation (̂ 4) contains no points in R at which M\ is of 
rank less than 1. The first part of the theorem is thus estab­
lished. 

Suppose now that ci, c2, • • • , Ck have been chosen so that 
at every point in R of the manifold defined by the first k 
equations (A), the matrix Mk is of rank k. We consider the 
simultaneous system of equations consisting of the two sets 

( 3 ) F l ( * l , * 2 , * • * yZn) — Cl = 0 , • • • ,Fk(j&l,Z2, ' ' ' , Zn) ~ Ck = 0 , 

and 

(4) Z>i(2i ,22 , * * * , Zn) = 0 , • • • , Dr(Zi,Z2, • • • , Zn) = 0 , 

where Du • • • , Dr are all the determinants of order k + 1 
formed from the matrix Mk+i, except such as may be identi­
cally 0. Not all vanish identically, since, by hypothesis, Mm 

is of rank m at some point of R. 
If this system has any solutions in the neighborhood of a 

point (a) of R, they consist, by Osgood's theorem, of the 
point (a) alone, or of a finite number of manifolds g. Let g 
denote such a manifold. On it Mk and Mk+i are everywhere of 
rank&. Hence from the equations dFi = dF2=

: • • • =dFk = 0, 
which follow from (3), we infer that dFk+i = 0 at all points of 
the curve y connecting any two given points of g. By reason­
ing previously employed, it follows that for all but a finite 
number of values of ck+u the matrix Mk+i is of rank k-\-1 at 
all points of R on the manifold defined by the first k + 1 
equations (A). This proves the second part of the theorem. 
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The truth of the final statement of the theorem emerges 
when to k are assigned successively the values 1, 2, • • • , 
m — 1, and when it is recalled that a sufficient condition that 
the manifold defined by the equations (A) has no singular 
points in R is that the matrix Mm is of rank m at all points of 
the manifold in R. 

HARVARD UNIVERSITY 

ON T H E FOUNDATIONS OF GENERAL 
INFINITESIMAL GEOMETRY* 

BY HERMANN WEYL 

In connection with a seminar on infinitesimal geometry in 
Princeton, in which I took part, it seemed desirable to clarify 
the relations between the work of the Princeton school and 
that of Cartan. 

With a group © of transformations in m variables £ is 
associated, in accordance with Klein's Erlanger Program, a 
homogeneous or plane space 9? of the kind © ; a point of 9? is 
represented by a set of values of the "coordinates" £a and 
figures which go into each other on subjecting the coordinates 
to a transformation of © are to be considered as fully equiva­
lent. The transformations of © give at the same time the 
transition between two allowable "normal" coordinate sys­
tems in 9?. If we have two spaces 9î, 9?' of the kind © and 
set up a definite normal coordinate system in each of them, 
then such a transformation can be interpreted as an iso­
morphic representation of 9? on 9Î'. © is assumed to be 
transitive. 

Cartan f developed a general scheme of infinitesimal geome­
try in which Klein's notions were applied to the tangent 
plane and not to the n-dimensional manifold M itself. The 

* Presented to the Society, June 21, 1929 
f E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité 

généralisée, Annales de l'École Normal Supérieure, vol. 40 (1923), pp. 325-
412; in particular, p. 383, etc. 


