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The truth of the final statement of the theorem emerges 
when to k are assigned successively the values 1, 2, • • • , 
m — 1, and when it is recalled that a sufficient condition that 
the manifold defined by the equations (A) has no singular 
points in R is that the matrix Mm is of rank m at all points of 
the manifold in R. 
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In connection with a seminar on infinitesimal geometry in 
Princeton, in which I took part, it seemed desirable to clarify 
the relations between the work of the Princeton school and 
that of Cartan. 

With a group © of transformations in m variables £ is 
associated, in accordance with Klein's Erlanger Program, a 
homogeneous or plane space 9? of the kind © ; a point of 9? is 
represented by a set of values of the "coordinates" £a and 
figures which go into each other on subjecting the coordinates 
to a transformation of © are to be considered as fully equiva
lent. The transformations of © give at the same time the 
transition between two allowable "normal" coordinate sys
tems in 9?. If we have two spaces 9î, 9?' of the kind © and 
set up a definite normal coordinate system in each of them, 
then such a transformation can be interpreted as an iso
morphic representation of 9? on 9Î'. © is assumed to be 
transitive. 

Cartan f developed a general scheme of infinitesimal geome
try in which Klein's notions were applied to the tangent 
plane and not to the n-dimensional manifold M itself. The 

* Presented to the Society, June 21, 1929 
f E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité 

généralisée, Annales de l'École Normal Supérieure, vol. 40 (1923), pp. 325-
412; in particular, p. 383, etc. 



igig.] INFINITESIMAL GEOMETRY 717 

object of his work can be briefly described as follows. There 
is associated with each point P of M an ra-dimensional plane 
space of the kind ®. To the transition from P to a neigh
boring point P', that is, to the line element PP'', corresponds 
an isomorphic representation of TP on TP>, the "displace
ment" Tp—^Tpi or briefly P P ' . On this basis the introduction 
of a general concept of curvature is possible: if we displace 
the tangent plane Tp in P along a curve L on M which leads 
back to P the tangent plane returns in a new position or 
orientation. The final position is obtained from the original 
by a certain isomorphic representation of TP onto itself, and 
this we call the "curvature along L." 

For the purpose of analytic formulation we refer M to 
coordinates x* and introduce a normal coordinate system §a 

in each tangent plane Tp. Let the components of PP' be 
dx\ We assume that the £a of all the TP can be so chosen 
that the displacement PP' is an infinitesimal isomorphic 
representation of the same order of magnitude as the dx\ A 
radical specialization is introduced by the further assumption 
that this displacement depends linearly on PP', i.e. that the 
consecutive application of the displacements PP' and P'P" 
shall yield the displacement PP". The displacement from P 
to all neighboring points P' is then expressed by the formula 

(1) d£« = - J^ufi&dx*. 
i 

The curvature along the infinitesimal parallelogram formed 
by line elements dx and ôx, which consequently has as com
ponents 

(Ax)ik = dxlbxk — bx{dxk, 
is given by 

(duf dUia\ (duf duf \ 
Rik = ( : 1 + ( uf uk<> . 

\ dx1 dxk ) \ d£» d& / 
In the foregoing the tangent plane is not tied up with the 

manifold; in order to justify this designation and hold to the 
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idea of a tangent plane we must now imbed it into the mani
fold. The first step in this process consists in taking a definite 
point 0 of Tp as center which shall, by definition, cover the 
point P on M (imbedment of Oth order). This leads to a 
restriction in the choice of a normal coordinate system £ on 
TP ; because of the transitivity of © it can and shall be so 
chosen that the coordinates £ vanish in the center. The 
group @ is restricted to the subgroup ©Oof all representations 
of © which leave the center 0 invariant. On displacing the 
tangent plane along a closed curve L, O goes over into a 
point 0* whose deviation from 0 characterizes the "torsion 
along L." R"k(Q) = 0 is the necessary and sufficient condition 
that M be without torsion. 

The idea of tangent plane further requires that the line 
elements of Tp issuing from O shall "coincide" with the line 
elements of M issuing from P ; this correspondence must be 
a one-to-one affine representation. But having already re
quired imbedment of 0th order the method of accomplishing 
this imbedment of 1st order is fixed. The center 0' of Tp> 
arises by the displacement PP' from a definite point 0\ of Tp, 
and we let the line element OOi on TP correspond to the line 
element PP' on M. For purposes of calculation it is, however, 
more convenient to consider the line element 0{0! on Tp> 
which arises from 00\ by the displacement PP'. The 
^-coordinates of 0{ on Tp> are d^a — — U{a{fydx\ and conse
quently 

(2) d^ = ui
a(0)dxi 

are the components of the line element 01Oi on Tp> or 00\ 
on Tp. The condition that this linear relation between (dx) 
and (d%) be one-to-one reciprocal involves two requirements : 
(1) the dimensionality mof the tangent plane (which was until 
now arbitrary) must be the same as the dimensionality n of 
the manifold M, and (2) the determinant |«f (0) | ^ 0 . If © 
contains the affine group, and we shall henceforth assume 
that it does, the coordinate system £a on Tp can be further 
adapted to the given coordinate system xl on M in such a 
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way that corresponding line elements shall have the same 
components : u? (0) = of1. 

If ® were the affine group the previous requirements would 
fully specify the normal coordinate system £a on Tp in its 
dependence on the coordinates xi chosen on M; but this is 
not the case if @ is a more extensive group. That is, the 
"tangent plane" Tp is not as yet uniquely determined by the 
nature of M, and so long as this is not accomplished we can 
not say that Cartan's theory deals only with the manifold M. 
Conversely, the tangent plane in P in the ordinary sense, 
that is, the linear manifold of line elements in P , is a centered 
affine space; its group © is not a matter of convention. 
This has always appeared to me to be a deficiency of the 
theory; I consider that above all, the infinitesimal-geometric 
researches of Eisenhart, Veblen, T. Y. Thomas, and others 
in Princeton! have remedied this blemish for projective and 
conformai geometry. 

The connection between £ and x, although not yet uniquely 
determined by the previous postulates, allows us to conclude 
the following : In the development 

RkQ = RÏk(fi) + R*fii& + • • • , 

the quantities i ^ ( 0 ) and Rptk in the point P are determined 
by the coordinates xl alone and transform on transformation 
of coordinates as tensors of order 3 and 4, of the kind indi
cated by the position of the indices. It is therefore an in-
variantive restriction to require that our manifold be such 
that (1) it is without torsion and (2) ^Raik vanish; we call 
such a manifold "special." 

Let © be the projective group. We must then proceed to 
imbedment of second order in order that TP be completely 

f L. P. Eisenhart, Non-Riemannian Geometry, 1927. O. Veblen, Pro
jective tensors and connections, Proceedings of the National Academy, vol. 
14 (1928), p. 154; Conformai tensors and connections, ibid., vol. 14 (1928), 
p. 735. T. Y. Thomas, A projective theory of affinely connected manifolds, 
Mathematische Zeitschrift, vol. 25 (1926), p. 723. 
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determined by M. We consider, as an analog, the contact of 
two surfaces 

y = / ( s 1 , • • • , %n), y = / ( * S • • • , ffn) 

in (n+l)-dimensional space. Let 

/ — ƒ = a + dix1 + ^dikX^* + • • ' 

in the neighborhood of the origin. There is contact of 0th 
order (intersection) if a = 0, of 1st order (tangency) if in 
addition the linear terms are not present, ai = 0, and finally 
contact of second order (osculation) if further all a a vanish. 
I refer to the two surfaces as semi-osculating if in addition 
to a and a% the sum X)(*)a»*» the spur of the quadratic terms, 
vanishes. Analogously we demand that Tp not only be 
tangent to the manifold but further that it be semi-osculating. 
The name tangent plane is then misleading, but we shall use 
it instead of the more correct "projective semi-osculating 
plane" for the sake of brevity. The exact definition is as 
follows. Given an infinitesimal volume element F in P , say 
a parallelepipedon obtained from line elements in P which 
shall be infinitely small in comparison with PP' — {ax1). Let 
V' be the "same" volume element in P ' , that is, it shall be gen
erated from the line elements with the same components in 
P ' ; naturally this construction is dependent on the particular 
coordinate system employed. Because of the imbedment of 
order F coincides with a volume element F in 0 on TP and 
V' with one such in 0' on TP>\ this latter is obtained from 
an element V\ in 0\ on TP by the displacement PP'. We 
now require that F and Vi have the same volume, measured 
in the coordinates £ on Tp. 

It is again more convenient for the calculation to take F 
and Vi over into V{, V' on Tp» by means of the displacement 
PP;. The isomorphic representation which carries V' into 
VÎ is by definition simply (1)—taken for £'s which are in
finitely small compared to the dx*. Consequently we write 

ueü) = w + r^ f 
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and on introducing a a 

Tpidx* = dyfi, 
we find 

log(V'/V{) = log(Fi/F) = 2 X -
P 

Our condition is that this trace shall vanish, and we assert 
tha t it can be fulfilled by appropriate choice of the projective 
coordinates £a on Tp. The previous requirements determine 
the £ except for a projective transformation of the type 

- = T 

which leaves the center unaltered and is the identity to terms 
of first order in the neighborhood of the center. The ratio 
of the measures of volume elements V and V in £ and £, 
situated at (£a), is given by the functional determinant 

For infinitely small £ this determinant is 

(££) = 1 - (»+ 1) 2 > ^ . 

Our volume V is at the point £ = 0, V\ dit £a = dxa, and con
sequently 

log (Vt/V) = log (Vx/V) - (n + 1) T,a<4x* 

from which we see that in order that Vi = V the ai can be 
chosen in one and only one way ; ai = Tp

pi. 
The projective coordinate system £ on TP is now com

pletely specified by the coordinates x{ on M. If we refer M 
to a new coordinate system x{ we shall have a new projective 
coordinate system £ on Tp. The projective transformation 
£—>£ can be described by the facts (1) that it agrees in the 
neighborhood of the origin with the transformation x—>x in 
terms of first order about P and (2) that the functional de
terminant (££) in 0 agrees with (xx) in terms of 1st as well as 
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Oth, order. H. P. Robertson* pointed out in a short note 
that this relation is the decisive point in Veblen's transfor
mation theory of projective space. What we do here, how
ever, is not simply connect the transformations of the £ with 
those of x but rather we associate a projective £ coordinate 
system on Tp with an individual x system on M. This 
possibility arises from the fact that we begin with the pro
jective connection and with its aid tie up the £ with the x, 
i.e. accomplish the complete imbedment of the tangent plane. 
But on the other hand the transformation of the £ is deter
mined by the transformation of the x, as described above, 
without taking the given projective connection into account. 
Veblen's procedure corresponds to this method : this relation 
between the two transformations is first obtained and the 
corresponding invariant theory of possible projective con
nections then developed. 

The introduction of w + 1 homogeneous projective coordi
nates rj by means of the equation ^ — r}1/^ is for the present 
purely a matter of convenience. The formulas for the dis
placement expressed in terms of them have the form 

(3) dri" = - dyfriP, dyf = Ttfdx*. 

(From now on Greek indices shall run from 0 to n and Latin 
from 1 to n.) Since only the ratios of the rj are to be con
sidered we can and shall introduce the normalizing condition 
dy0° = 0. We then have Tp

pi = of* and Tp
pi = 0. In the case of a 

special manifold (see above) we have furthermore the sym
metry condition Tki = T"k and the T with only Latin indices 
determine the remaining components. This leads to the 
theorem: If we allow only special manifolds the projective 
connection is determined uniquely by the geodesies, f 

* H. P. Robertson, Note on projective coordinates, Proceedings of the 
National Academy, vol. 14 (1928), p . 153. 

t See J. A. Schouten, Rendiconti di Palermo, vol. 50 (1926), pp. 142-169, 
in particular p. 158. I do not find tha t this work, which is closely related to 
our process, gives a clear account of the fact tha t the coordinates £ must be 
tied up with the x as described above. 
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For the complete development of projective infinitesimal 
geometry we must, in my estimation, add three independent 
ideas to Cartan's scheme; the first and most important of 
these consists in connecting the coordinates £ with the x by 
the requirement of "semi-osculation," the second answers the 
question to what extent the geodesies determine the projec
tive connection by the invariantive "specialization." The 
third idea, which I now consider, is due to T. Y. Thomas: it 
is possible to give the variables rj themselves, and not only 
their ratios, a geometrical interpretation. The analytic ex
pression in coordinates rj for any projective mapping which 
leaves O invariant, 

(4) 77* = ] > > * V , 770 = 770 + £ > # ? * , 
A; k 

can be so normalized that the coefficient a§ = 1. This normal
ization is useful because it is not destroyed by composition : 
the group ©0 is replaced by the isomorphic group of affine 
transformations in n+1 dimensions of the form (4). If the 
transition 77—>T7 on TP corresponds to the transition x-*x on 
M the transformation (4) can further be described as agreeing 
with the transformation of the differentials dx°, dx1, • • • ,dxn 

in P when the additional coordinate x° transforms in accord
ance with the law 

1 
(5) x° = x° log (xx). 

n+1 
We now have an (n+1)-dimensional manifold M* instead of 
M; each point of M is replaced by a filament of M* along 
which xl, - • - , xn are constant and only x° varies. By (5) 
the distance between points on the same filament, i.e. the 
difference of their x° coordinates, as well as the filaments 
themselves, have an invariantive significance. An (w+1)-di
mensional affine tangent plane, the domain of the variables 
rj, is associated with each point of M*. The transformation of 
the 77, which is related to a transformation of the x on M, is 
the same for all points on the same filament. Extending the T 
by adding r^o = ô", this means that the ratios 770 irj1: • • • :rjn 
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of a point on the tangent plane are unaltered by displace
ment along the filament. The ^-dimensional projective dis
placement on Tkf* defined by 

(6) dr)a = - dyf^, dy? = T^dx*, 

is consequently invariantively determined by the projective 
displacement on M. 

We must next ask if this is also true for the (w + 1)-
dimensional affine displacement expressed by the same for
mulas ; the answer is affirmative, because our normalization is 
so chosen that Tpp is symmetric in j3 and p. To show this, let 
r^p be the projective connection of M evaluated in a new 
coordinate system xl in the manner described above, and let 
Vfip be the components of the same affine connection on M* 
expressed in terms of the coordinates xl in the manner indi
cated by (6) in terms of the x\ Then the corresponding equa
tions (6) characterize the same projective connection, that is, 
F£p and f £p can differ only by a term of the form 5"XP. Now 
r as well as T must be symmetric in the two lower indices and 
consequently 

öf\p = öp°\fi, 

from which we obtain by the contraction a = p 

X, = ( » + 1)X„ X, = 0. 

All that we have said here can be taken over mutatis 
mutandis to the conformai geometry. Here the equation 

(7) gikdxldxk — 0 

on M is fundamental. If gnc be the values of the coefficients 
in P then the conformai geometry on the homogeneous 
"tangent" plane TP is described by the equation gikd^dï* = 0 
with constant coefficients gnc; the group © consists of all 
transformations of the £ which leave this equation invariant 
and consequently depends on the point P in question. The 
conformai displacement PP' must be a transformation which 
takes the equation gikd^dg* = 0 over into gii4^ud^k = 0. Con
sequently this does not agree literally with the scheme de-
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veloped above—furthermore ® does not contain the affine 
group (only the orthogonal one). We must expressly require 
that the coincidence of the line elements PPf on M and OOl 
on Tp is a conformai, and not merely an affine, relation. 
(1) The requirement of semi-osculation is also here sufficient 
to tie up the conformai coordinate system £ uniquely with 
the x. (2) If the manifold is special the conformai connection 
is uniquely determined by equation (7). (3) The transition 
to homogeneous coordinates 77, in which the conformai repre
sentation appears as a homogeneous linear transformation, 
is here accomplished, following Möbius, by 

rç0:*?1: • • • :vn--v = l:*1: • • • :£n: - &**£***• 

These coordinates are subject to the relation 

gikvW + 2 A = 0. 

I t is convenient for the purpose of calculation to normalize 
the coefficients g^, only the ratios of which are given, by the 
condition | g a | = l . This third and last step, which was 
carried through by Veblen in a recent paper, proceeds as 
before, but the result is more complicated since we have w + 2 
variables 77, whereas Thomas' extension gives but n + 1 co
ordinates x. Consequently we do not arrive at an affine con
nection on an (n + 1)- or (n + 2)-dimensional manifold M*, 
invariantly related to the conformai connection on M. 
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