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1. Introduction. Limits to the number of multiple points 
of algebraic curves were first found by Cramer, f He found 
and tabulated the maximum numbers of multiple points of 
all possible orders for curves of orders up to and includ­
ing eight. Plückerf obtained the general expression 
(n — \){n — 2)/2 for the maximum number of double points 
of an algebraic curve of order n. 

Except for individual curves, the maximum number of 
multiple points of higher order than two for a curve of given 
order has not been found. A general expression for the maxi­
mum number of compound singularities or singularities of 
different orders is not practicable. When, however, the curve 
possesses only multiple points or sets of multiple points of 
the same order, serviceable limits for the maximum number 
of such singularities can be found. 

The purpose of this paper is to determine the maximum 
number of distinct multiple points of given order and con-

* Presented to the Society, June 20, 1929. 
f G. Cramer, Introduction à I'analyse des lignes courbes algébriques, 

Geneva, 1750, pp. 455-459. 
J J. Plücker, Theorie der Algebraischen Curven, Bonn, 1839, p. 215. 
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secutive multiple points of given order that may belong to 
an algebraic curve of given order. 

2. Invariants Associated with Multiple Points. With each 
singularity of a curve ƒ there are associated certain functions 
of the coefficients of the equation of ƒ, invariant under a 
projective transformation, whose vanishing is necessary and 
sufficient for ƒ to possess this singularity. Such functions 
will be called invariants. Also, all curves herein considered 
are proper curves. 

A necessary and sufficient condition for ƒ to have a multiple 
point of order r at P is that all the partial derivatives of ƒ 
up to and including the (r — l)st vanish at P . These partial 
derivatives constitute r(r + l ) / 2 linear functions of the co­
efficients of/. The postulation of an ordinary r-fold point on 
ƒ is, therefore, r ( r + l ) / 2 . The two independent coordinates 
of P may be eliminated from the r ( r + l ) / 2 relations among 
the coefficients in r ( r + l ) / 2 —2 independent ways giving rise 
to r(r+l)/2 — 2 invariants associated with each ordinary 
r-fold point. 

Consecutive multiple points of ƒ are multiple points that 
coincide at a point P in such a way that all the branches of ƒ 
common to two or more of these multiple points have a 
common tangent at P. Enriques* has proved that the postu­
lation of 5 consecutive multiple points of orders r» on ƒ is the 
same as the total postulation of the s multiple points con­
sidered as distinct on ƒ, that is 

2 i=i 

Assume tha t 5 points are consecutive on a curve. If one of 
the points P is fixed, one condition determines the direction 
of approach to P of each of the remaining s—1 points. The 
two parameters defining P and the s — 1 parameters deter­
mining the s—1 directions through P total s + 1 parameters. 

* F. Enriques, Lezioni sulla Teoria Geometrica délie Equazione e délie 
Funzioni Algebriche, vol. 2, pp. 404-408. 
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Therefore the number of independent parameters involved in 
the location of 5 consecutive points on any plane curve is 
5 + 1 . 

The postulation of a singularity is the total number of con­
ditions necessary and sufficient to determine both the nature 
of the singularity and its position. The ] £ / t(r i +l)/2 relations 
among the coefficients o f / t h e n involve the s+1 parameters 
which determine the positions of the 5 consecutive points. 
From these yVt ( r j+1 ) /2 relations the s+1 parameters may 
be eliminated in^ri(ri+1)/2 — s — 1 independent ways, each 
éliminant being an invariant associated with the singularity. 
There are, then, 

— 2>«(fi + i) - s - 1 
2 i^i 

invariants associated with 5 consecutive multiple points of 
orders r». These invariants determine the nature of this 
singularity of ƒ and only that . 

3. The Maximum Number of Consecutive Multiple Points. 
It has been proved by Lefschetz* that there can be no more 
that n(n + 3)/2 — 8 invariants among the coefficients of the 
equation of an algebraic curve of order n and genus p>l. 
In the preceding section it has been found that sr(r+l)/2 
— s—1 invariants are associated with 5 consecutiver-fold 
points. A limit to the number of consecutive r-fold points 
tha t may occur on a curve of order n and genus p > 1 is 
therefore determined by the inequality 

\sr{r + 1) - s - 1 ^ \n(n + 3) - 8 

which, when solved for 5, becomes 

n2 + 3n - 14 
(1) s ^ ~ 

( r - l ) ( r + 2 ) 

* S. Lefschetz, On the existence of loci with given singularities, Trans­
actions of this Society, vol. 14 (1913), pp. 23-24. 
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For Y — 2, this is the limit to the number of consecutive nodes 
of a curve of order n found by Sharpe and Craig.* 

Another limit to the number of consecutive r-fold points 
of a curve of order n is found from the fact that the total 
number of double points cannot exceed (n — l)(n — 2)/2. 
Since an r-fold point contains r(r— l ) /2 nodes, this gives the 
limit 

{n - 1 ) 0 - 2) 
(2) s£ 

r(r - 1) 

For r = 2, 3, 4, limit (1) holds for n ^ 6, 10, 13, respectively, 
otherwise limit (2). Both limits give 5 = 10 for r = 2 and n = 6. 
For n ^ 6, therefore, all the nodes of an algebraic curve of any 
genus may be consecutive. 

Limits (1) and (2) are equal for 

O - 1)0 - 2) 
3n - 8 

Limit (1) holds for all values of r less than or equal to the 
above value and limit (2) holds for all values of r greater than 
or equal to this value. However, there are certain exceptions 
to limit (2) now to be discussed. 

Since limit (2) is determined by the maximum number of 
double points of the curve, this limit would permit a curve of 
order n to have more than one point of order r*z(n+l)/2. 
This is impossible, since a line joining two such points would 
intersect the curve in more than n points. The range of r for 
limit (2) is, therefore, restricted to (n — l)(n — 2)/(3n — 8) 
^r^n/2. 

Within the above range for r, limit (2) holds except when 
the value of 5 determined by limit (2) is of the form 
n'(n' + 3)/21 where n' is any positive integer. A curve of 
order n' through the 5 consecutive r-fold points of ƒ cannot 
intersect ƒ in more than nn' points. In case the value of 5 is 
not the exact number necessary to determine a curve of order 

* Sharpe and Craig, Plane curves with consecutive double points, Annals 
of Mathematics, vol. 16 (1914-15), p. 19. 
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n', then additional simple points of ƒ must be chosen to de­
termine the curve of order nf through all the s consecutive 
r-fold points of ƒ. In this case, the number of intersections 
of the two curves is always less than nn' when limit (2) is 
satisfied. 

There remains, then, an exception to limit (2) for r^n/2 
only when limit (2) gives the value s = w'(tt' + 3)/2 and then 
only when nnf<sr. We shall now prove that in all cases 
when w>4, s = n'(n' + 3)/2 and nn'<sr, the inequality 
sr — nn'<r holds. 

Assume s = n' (n' + 3) /2 = (n- l)(n-2) /[r(r - I)] and elimi­
nate n' from this equation and the inequality sr — nn' <r to 
be proved. This gives 

3nr2 - r(n2+6n-2) - ( > - 1 ) 0 - 2 ) < 0. 

This inequality is evidently satisfied except for large values 
ofr. The largest value of r occurs when 5 = 5. If we eliminate 
r from the equality Sr{r — 1) = (n — 1) (n — 2) and the above in­
equality, there results an inequality in n which is satisfied for 
all values of n>4. 

Therefore, when the value of 5 defined by limit (2) is of 
the form n'(n' + 3)/2 and nn'<sr, since also sr — nn'<r, the 
maximum number of consecutive r-fold points for that order 
n is one less than the value given by limit (2). 

The least value of r for which limit (2) holds is 
(n— l)(n — 2)/{3n — 8). Substitute this value of r in limit (2) 
and there results s = 9 for n>6. Substituting the largest 
value n/2 of r in limit (2), we obtain s = 3. The entire range 
of values of s given by limit (2) for n>6 is, therefore, 
9 ^ s â 3 . 

When s = 9, a cubic can be passed through the nine multi­
ple points, that is, n'= 3. Since (n — 1) (n — 2)/(3n — &)—n/3 
is less than 1/3 for all values of n>6, the largest value of r in 
proportion to n for which 5 = 9 occurs when n is a multiple of 
3 and r = n/3. In this case, a cubic through the nine multiple 
points intersects ƒ in 3n points, tha t is, all the intersections 
of ƒ and the cubic occur at the multiple points. The only 
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restriction on the positions of the nine multiple points of 
order n/3 is tha t they can not all lie at the nine intersections 
of two cubics. 

The only case in which nn'<sr, therefore, occurs when 
nf = 2 and 5 = 5. If we set 5 = 5 in limit (2), there results a 
value of r in terms of n such that five times this value of r is 
always greater than 2n. Then, in accordance with the above 
proof, when r>2n/5 and limit (2) gives 5 = 5, the maximum 
number of consecutive multiple points of this multiplicity is 
four. This is the only exception to limit (2) within the range 
of the values of r for which it holds. 

Since limit (2) is defined by the maximum number of 
double points of a curve, this limit as well as the above dis­
cussion of it applies equally well to distinct multiple points 
and to consecutive multiple points. 

When r has its maximum value for a given n, if n is even, 
r = n/2, 5 = 3 and if n is odd, r = (n —1)/2, 5 = 4 for n>5. 
These multiple points may be either distinct or consecutive. 

If k cusps, Q^k^r— 1, replace the same number of nodes 
in 5 consecutive r-fold points, the limit for s obtained by 
considering the number of invariants associated with the 
singularity is 

n2 + 3n- 14 - 2k 
(3) 5 < — — 

~ ( r - l ) ( r + 2) 
Limit (2) is, however, unchanged. For given values of r, k 
and n, the smaller of the two limits (2) and (3) now deter­
mines the maximum value of 5. In case the inequality 
k^3n — 8 — (n — 1) (n — 2)/Vissatisfied, limit (3) holds, other­
wise limit (2). The same restrictions on limit (2) obtained 
above for k = 0, hold for all values of k since in limit (2) and 
in determining the number of intersections of two curves, a 
cusp counts merely as a double point. 

If a curve ƒ of order n has j singularities each consisting 
of 5 consecutive nodes, the following limits are found : 

(a) j = O 2 + 3n - 16)/(45 - 2), 

(b) i = ( » - l ) ( » - 2 ) / ( 2 * ) . 
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For s^(n— l)(n — 2)/[(n — 4 ) 0 — 5)] limit (a) holds, other­
wise limit (b). 

For s = 2, solve (n- l)(n-2)/[(n-4:)(n-5)]^2 for n and 
we obtain w ^ 11. For n = 12, however, 54 of its possible 55 
nodes may form 27 tacnodes and limit (a) still be satisfied. 
Then for n ^ 12, a curve of any genus may have all its nodes 
consecutive in pairs to form tacnodes when the number of 
nodes is even or all but one when the number is odd. Simi­
larly, for n^9 a curve of any genus may have as many 
oscnodes as the integral number of times three is contained 
in the number of its nodes. 

If each of the singularities consists of s — 1 nodes and one 
cusp, all consecutive, each singularity accounts for 2s in­
variants. Then the maximum number.; of such singularities 
must satisfy limit (b) and also the limit 

(a') j ^ 0 2 + 3n - 16)/(4s). 

Limit (a') is less than limit (b) for n^6 and all values of s. 
For example, a quintic may have three ramphoid cusps or 
two tacnode-cusps. A sextic may have three tacnode-cusps, 
but not five ramphoid cusps nor two sets each containing four 
nodes and one cusp. 

More generally, in order that a curve of order n have j 
singularities each consisting of 5 consecutive r-fold points, the 
following inequality must be satisfied : 

j ^ (** + 3n - 16) /Kf - l)(r + 2) - 2] , 

and also the total number of nodes in the j singularities must 
not exceed (n — \)(n — 2)/2. 

In order to show that a curve of order n can possess a 
singularity consisting of s consecutive multiple points of 
orders r\, r%, • • • , r81 both of the following inequalities must 
be satisfied : 

5><(r*+ 1) - 2s ^ n(n + 3) - 14, 

5 > < ( r < - 1) S ( » - l ) ( » - 2 ) , 

and also it must be shown that the sum of the n'(nf+ 3)/2 
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largest values of ri does not exceed nn' for any value of n' 
such that s^n'(n' + 3)/2. 

None of the above limits hold when more than two multi­
ple points are collinearly consecutive. Since a line can not 
intersect a curve of order n in more than n points, the limit 
to the number of collinearly consecutive r-fold points is 
s^n/r, or in case the multiple points are of different orders, 
the inequality ] C ^ = W must be satisfied. 

4. Limits for Distinct Multiple Points. Since each r-fold 
point involves r ( r + l ) / 2 — 2 invariants, the following limit 
defines the maximum number s of distinct r-fold points : 

(1;) s ^ (n2 + 3n - 16)/02 + r - 4). 

I t was noted in the preceding section that limit (2) applies 
to distinct as well as to consecutive multiple points. Then 
limits (10 and (2) apply to distinct multiple points. The 
discussion of limit (2) in the preceding section also applies 
equally well to distinct multiple points. 

Limit (10 holds for 

r ^ {n* - 7 + [(n2 - 7)2 

- 24(^ - \){n - 2)(» - 3)]1/2}/[6(^ - 3)], 

otherwise limit (2). The radicand is negative for n^ 16, but 
for a given value of r the least value of n for which limit (1 /) is 
less than limit (2) is 18. 

For r = 2, limit (10 is always greater than limit (2). For 
r = 3 or 4, limit (2) holds for n^l7 and limit (10 for ng>18. 
As r increases, this discriminating value of n increases, for 
example, when r = 5 or 6, limit (10 holds for n^2Q, 23 re­
spectively, otherwise limit (2). 

We shall now prove that neither limit (1) for the maximum 
number of consecutive multiple points of order r nor limit 
(10 for the maximum number of distinct multiple points of 
order r is subject to any restriction due to intersections of 
ƒ with a curve through its multiple points. 

For r [ ( 4 t t 2 + 1 2 w - 4 7 ) 1 / 2 - l ] / 2 , limit (10 è l imi t (1). For 
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n^4, this value of r is greater than the upper limiting value 
of r for which limit (1) holds. Then limit (1') is larger than 
limit (1) for all values of n and r for which limit (1) holds. 
Then to prove that limit (1') is never so large as to allow a 
curve of order n' through the 5 multiple points to have more 
than nn' intersections with the curve of order n possessing 
the multiple points will also establish the same property for 
limit (1). 

Let s = (n2 + 3n-16)/(r2+r-4:)=n'(n' + 3)/2, that is, 
assume the largest possible value of s given by limit (1') and 
assume further that this is the exact number of points neces­
sary to determine a curve of order n' through the 5 distinct 
multiple points of order r. These are the conditions under 
which a curve of order n' through the 5 multiple points inter­
sects the curve possessing the multiple points in the greatest 
number of points. 

Together with the above equality, assume nn' ^ s r . Elimi­
nate n' from this inequality and the above equality and there 
results 

r2(n2 + 3n - 16) - n(2n - 3r)(r2 + r - 4) ^ 0. 

Substitute in this inequality the maximum value of r in 
terms of n for which formula (1') holds and the resulting in­
equality in n is satisfied by all values of n^S. 

Then the maximum number of multiple points of order r 
as defined by limit (1') when distinct, or by limit (1) when 
consecutive, satisfies the criterion tha t no proper curve of 
order n' can be described through them intersecting the curve 
of order n possessing the multiple points in more than nn' 
points. 
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