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HAUSDORFF'S T H E O R E M CONCERNING 
H E R M I T I A N FORMS 

BY M. H. STONE 

In 1919, Hausdorff proved an interesting theorem to the 
effect that the complex values assumed by the Hermitian form 

n 

/ sdgljXaXfii 

when the complex numbers xi, • • • , xn take on all values 
compatible with the relation 

n 

/ jXgXq = = 1 y 

a - 1 

constitute a convex point set in the complex plane.* In his 
demonstration Hausdorff employs the transformation of 
Hermitian symmetric forms of this type to principal axes. I t 
is obvious, therefore, that the extension of this method to more 
general instances is impossible, because the principal axis 
transformation may no longer be available, a situation which 
arises, for instance, in the important case of unbounded forms 
in infinitely many variables. On this account, a proof along less 
special lines is of considerable interest. I t is gratifying to 
ascertain that an entirely elementary, explicit, and general 
demonstration of HausdorfFs theorem can be devised by 
making it depend upon the theorem for binary forms. The 
proof we shall give involves nothing more difficult than 
manipulations of complex numbers and the solution of quadratic 
equations. 

We first indicate what we shall mean, abstractly, by an 
Hermitian bilinear form. Let J be a class of elements in which 
the operations + (vector addition) and a- (scalar multiplica
tion by an arbitrary complex constant a) are significant and 
possess their customary algebraic properties; let J be closed 
under these operations. Such a class may be called a complex 
vector space, its elements complex vectors. A complex-valued 

* Mathematische Zeitschrift, vol. 3 (1919), pp. 314-316. 
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function B(f> g) defined for every pair of elements (ƒ, g) in J 
is said to be an Hermitian bilinear form if and only if it has the 
following properties : 

B(af,g) = oB(f,g), 

B(fi+f2,g) =B(fl9g) + B(ft,g), 

B(f,ag) = âB(f,g), 

B(f,gi + g*) = B(f,gl)+B(f,g2). 

Such a form is said to be Hermitian symmetric and positive 
definite if and only if B(f, g) and B(g, ƒ) are conjugate complex 
numbers and the real number B(f, ƒ) is never negative, vanishing 
only when ƒ is the null element or null vector. When B is 
Hermitian symmetric and positive definite, we can establish 
the Cauchy-Schwarz inequality 

l*a,*)l ^ [B{fj)B(g,g)Yi\ 

by the usual considerations. 
We assume that there exist in J two Hermitian bilinear 

forms Bi and B2, the second of which is Hermitian symmetric 
and positive definite. Let W be the set of complex values 
assumed by Bi when B2 is required to have the value 1. We 
wish to show that W is a convex set; that is, that, whenever z\ 
and z2 are in W, the points of the line segment joining them are 
also in W. 

If W contains just one point, there is nothing to prove, so 
that this case may be ruled out. Now, let Z\ and z2 be distinct 
complex numbers in W, and / i and f2 elements or vectors in J 
such that 

£ i ( / i , / i ) - «i, £i( /2 , /2) = *2, W i > / i ) = 1, B2(f2J2) = 1. 

We consider the binary Hermitian forms 

Ai(xi,x2) = J3i(*i/i + x2f2yxifi + x2f2) 

= ZiXiXi + Bi(J2,fi)xiX2 + Bi(JiJi)xiXi + z2x2x2, 

A2(xi,x2) = B2(xifi + x2f2,xifi + x2f2) 

= XiXi + B2(f2, f i)xix2 + B2(fiJ2)xxx2 + x2x2. 

We must show that, when A2 is restricted to have the value 1, 
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Ai takes on all values represented by points of the line segment 
joining Z\ and %i. 

It is convenient to introduce a new binary form 

A(xi,x2) = {A\ — ZÏA2)/(ZI — z2) = #i#i + 0,12X1X2 + a2iXiX2. 

In order that A\ should exhibit the requisite behavior, it is 
necessary and sufficient that, while A2 — \, A should take on 
all real values from 0 to 1 inclusive. We shall now find values 
for xi and X2 which bring about the desired result. We first 
define a complex number 7 as follows: Y = + 1 when âi2 = a2h 
and 7 = ±(âi2 —fl2i)/|^i2 —ö2i| when <zi2^a2i, the plus or the 
minus sign being chosen in each case so as to render the real 
number & — %{yB2(f2, ƒ1)) not negative. We set Xi = x, x2 = yy, 
where x and y are real variables, and substitute these values in 
the expressions for A and A2, obtaining 

A = x2 4- oixy, 

a = à = ± (an + #21) or + (ai20i2 — Ö21Ö21)/ I Ö12 — ö2i I , 

A2 = x2 + 2fixy + y2. 

We observe that 0 gjS g 1, in view of the inequalities 

1/3 I = | * ( T 2 * 2 ( / 2 , / I ) ) | r g | 7 | | W « , / I ) | 

= I £«(ƒ«,/l) I ̂  [ W l JOW»,/»)]1'* = 1. 

Hence the equation A2 = l can be satisfied by taking y= — fix+ 
[l —(1— /32)x2]1/2, and, with this value for 3% the form A 
becomes 

4 = (1 - a/3)x2 + ax[l - (1 - j32)*2]1/2. 

For x = 0, A takes on the value 0, for x — 1 the value 1 ; since A 
is a continuous real-valued function of x, it takes on at least 
once every real value from zero to one when x varies between 
these same values, as we wished to show. 

This completes the demonstration of HausdorfTs theorem 
that IF is a convex set. 
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