NOTE ON PERIODIC FUNCTIONS OF SEVERAL COMPLEX VARIABLES*

BY W. F. OSGOOD

Let $f_{1}(x), f_{2}(x), \cdots, f_{m}(x)$ be periodic functions of the complex variable x, each meromorphic in its fundamental domain of periodicity \mathfrak{F} (parallelogram or closed strip of periods). Let each function admit the period or periods corresponding to \mathfrak{F}, and let there be no other periods common to all the functions except such as are derived linearly and integrally from those of \mathfrak{F}. Then a suitable linear combination of the above functions,

$$
C_{1} f_{1}(x)+\cdots+C_{m} f_{m}(x)
$$

will admit the periods corresponding to \mathfrak{F}, and no others.
The corresponding theorem is not true for periodic functions of several complex variables. The proof is given by the following example. Let

$$
\begin{aligned}
& F\left(u_{1}, u_{2}, u_{3}\right)=u_{1}-\zeta\left(u_{3}\right) \\
& \Phi\left(u_{1}, u_{2}, u_{3}\right)=u_{2}-\zeta\left(u_{3}\right)
\end{aligned}
$$

where

$$
\zeta(z)=\frac{d}{d z} \log \sigma(z)=\frac{\sigma^{\prime}(z)}{\sigma(z)}
$$

and $\sigma(z)$ is the Weierstrassian sigma-function. Here

$$
\begin{aligned}
& \zeta\left(z+\omega_{1}\right)=\zeta(z)+\eta_{1} \\
& \zeta\left(z+\omega_{2}\right)=\zeta(z)+\eta_{2}
\end{aligned}
$$

where $\omega_{1}, \omega_{2}, \eta_{1}, \eta_{2}$ are connected by Legendre's relation,

$$
\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i
$$

These functions F and Φ obviously admit the periods

[^0]| u_{1} | η_{1} | η_{2} |
| :---: | :---: | :---: |
| u_{2} | η_{1} | η_{2} |
| u_{3} | ω_{1} | ω_{2} |

Moreover, these (and their integral combinations) are the only periods. For, let $\left(P_{1}, P_{2}, P_{3}\right)$ be an arbitrary period. Then

$$
\begin{aligned}
& u_{1}+P_{1}-\zeta\left(u_{3}+P_{3}\right)=u_{1}-\zeta\left(u_{3}\right) \\
& u_{2}+P_{2}-\zeta\left(u_{3}+P_{3}\right)=u_{2}-\zeta\left(u_{3}\right) .
\end{aligned}
$$

Hence $P_{1}=P_{2}$ and

$$
\zeta\left(u_{3}+P_{3}\right)-\zeta\left(u_{3}\right)=P_{1}
$$

In order that the function on the left-hand side of this identity admit no poles, it is necessary and sufficient that

$$
P_{3}=m_{1} \omega_{1}+m_{2} \omega_{2}
$$

where m_{1}, m_{2} are whole numbers. But then

$$
P_{1}=P_{2}=m_{1} \eta_{1}+m_{2} \eta_{2} .
$$

Consider now an arbitrary linear combination of these functions. Such a function has the value
$A F\left(u_{1}, u_{2}, u_{3}\right)+B \Phi\left(u_{1}, u_{2}, u_{3}\right)=\left(A u_{1}+B u_{2}\right)-(A+B) \zeta\left(u_{3}\right)$.
It is seen to depend on fewer than three linear combinations of u_{1}, u_{2}, u_{3}, for if we set

$$
w_{1}=A u_{1}+B u_{2}, w_{2}=u_{3},
$$

the function becomes

$$
w_{1}+(A+B) \zeta\left(w_{2}\right) .
$$

Hence the function $A F+B \Phi$ admits infinitely small periods. and the proof is complete.

Harvard University

[^0]: * Read before the mathematical group at the University of California at Los Angeles, January 6, 1930.

