NOTE ON RULED SURFACES AND THEIR DEVELOPABLES*

BY A. F. CARPENTER

If a plane π , whose coordinates κ , λ , μ , ν , are functions of the independent variable x in the system of differential equations

(1)
$$y'' + p_{12}z' + q_{11}y + q_{12}z = 0,$$
$$z'' + p_{21}y' + q_{21}y + q_{22}z = 0$$

defining a ruled surface R, is to be fixed relative to R, then must these coordinates satisfy the relations

(2)

$$2\kappa' = \eta\kappa - p_{12}\lambda + \mu,$$

$$2\lambda' = -p_{21}\kappa + \eta\lambda + \nu,$$

$$2\mu' = (p_{12}p_{21} - 4q_{11})\kappa + \eta\mu - p_{12}\nu,$$

$$2\nu' = (p_{12}p_{21} - 4q_{22})\lambda - p_{21}\mu + \eta\nu,$$

where η is an arbitrary function of x.[†]

The pole of this plane with respect to the quadric Q,

$$(3) x_1 x_4 - x_2 x_3 = 0,$$

which osculates R along a line element l_{yz} is given by the expression

(4)
$$\theta = \nu y - \mu z - \lambda \rho + \kappa \sigma$$

where

(5)
$$\rho = 2y' + p_{12}z, \qquad \sigma = 2z' + p_{21}y,$$

and the point which corresponds to π in the null-system of the linear complex which osculates R along l_{yz} is given by the expression

(6)
$$\phi = -p_{21}\mu y + p_{12}\nu z + p_{21}\kappa\rho - p_{12}\lambda\sigma.$$

1930].

^{*} Presented to the Society, June 20, 1930.

[†] Carpenter, Some fundamental relations in the projective differential geometry of ruled surfaces, Annali di Matematica, (3), vol. 26.

The equations of the quadrics Q_1 , Q_2 , which osculate the two branches of *R*'s flecnode surface along those line elements which intersect l_{yz} , are

(7)
$$p_{12}(x_1x_4 - x_2x_3) - 2qx_4^2 = 0,$$

(8)
$$p_{21}(x_1x_4 - x_2x_3) - 2qx_3^2 = 0,$$

where $q = q_{11} - q_{22}$.

The poles of π with respect to these two quadrics are given respectively by the expressions

(9)
$$\theta_1 = (4q\kappa + p_{12}\nu)y - p_{12}\mu z - p_{12}\lambda\rho + p_{12}\kappa\sigma = 4q\kappa y + p_{12}\theta$$
,

(10)
$$\theta_2 = f_{21}\nu y + (4q\lambda - p_{21}\mu)z - p_{21}\lambda\rho + p_{21}\kappa\sigma = 4q\lambda z + p_{21}\theta.$$

From (9) and (10) it results that the lines $l_{\theta\theta_1}$, $l_{\theta\theta_2}$ pass through the respective points y, z and hence that the plane π , determined by these three points, contains l_{yz} . Its equation is found to be

(11)
$$\kappa x_3 + \lambda x_4 = 0.$$

The one-parameter family of planes π_1 , one for each line element of R, determines a developable surface. The generators of this surface are the lines $l_{\alpha\theta}$ where

(12)
$$\alpha = \lambda y - \kappa z$$

is the point of intersection of plane π with l_{yz} . This we show by finding the characteristic line of plane π_1 .

By making use of conditions (2) the equation of the plane determined by the points $\theta + d\theta$, $\theta_1 + d\theta_1$, $\theta_2 + d\theta_2$ is found to be

(13)
$$q \left[\kappa^2 \lambda x_1 + \kappa \lambda^2 x_2 - (2\kappa \lambda \mu + \kappa^2 \nu) x_3 - (2\kappa \lambda \nu + \lambda^2 \mu) x_4\right] dx - \left[2q\kappa \lambda + (3q\kappa \lambda \eta + 4q'\kappa \lambda - p_{12}q\lambda^2 - p_{21}q\kappa^2) dx\right] (\kappa x_3 + \lambda x_4) = 0.$$

From (11) and (13) we find that this characteristic line is determined by the pair of planes

$$\kappa^2 \lambda x_1 + \kappa \lambda^2 x_2 - \kappa (2\lambda \mu + \kappa \nu) x_3 - \lambda (2k\nu + \lambda \mu) x_4 = 0,$$

$$\kappa x_3 + \lambda x_4 = 0.$$

The points α , θ are seen to lie in both planes.

Again, by making use of (2), we find

526

RULED SURFACES

(14) $2pA\theta' + 2qB\phi' - p(q\kappa\lambda + A\eta)\theta - q(B\eta + 4C)\phi = 0,$

(15) $2A\theta' - 4q\kappa\lambda\alpha' - (A\eta + 2q\kappa\lambda)\theta + 2q(\kappa\lambda\eta + \kappa\nu + \lambda\mu)\alpha = 0,$

where

$$p = p_{12}q_{21} - p_{21}q_{12}, \quad A = \kappa \nu - \lambda \mu, \quad B = p_{21}\kappa^2 - p_{12}\lambda^2,$$
$$C = q_{21}\kappa^2 - q_{12}\lambda^2.$$

Equation (14) expresses the condition that the line $l_{\theta\phi}$ shall generate a developable. Equation (15) is the similar condition for $l_{\alpha\theta}$.

The focal points of these respective lines are seen to be

(16)
$$\beta = pA\theta + qB\phi, \quad \gamma = A\theta - 2q\kappa\lambda\alpha.$$

Combining the above results we may state the following theorem.

THEOREM 1. Each plane π fixed in position with respect to a ruled surface R determines with R two developable surfaces. One cuts π in the curve of intersection of π and R, the other cuts π in a curve whose points are those which correspond to π in the null-systems of the osculating linear complexes of R, and they intersect each other in a curve whose points are the poles of π with respect to the quadrics which osculate R along its line elements.

The plane π_1 is tangent to Q at the point α , and its nullpoint as determined by the linear complex osculating R along lyz is given by the expression

(17)
$$\kappa \uparrow_{21} y - \lambda p_{12} z.$$

This point is on the line l_{yz} and is in fact the point of intersection of l_{yz} and $l_{\theta_1\theta_2}$, since

$$4q(\kappa p_{21}y - \lambda p_{12}z) = p_{21}\theta_1 - p_{12}\theta_2.$$

The equation of the plane of the points θ , ϕ , θ_1 is

$$Bx_2 - p_{12}Ax_3 + Dx_4 = 0,$$

where $D = p_{21}\kappa\mu - p_{12}\lambda\nu$. Its pole with respect to Q is given by

$$(18) Dy + p_{12}Az - B\rho$$

and its null-point by

$$(19) p_{21}Ay + Dz - B\sigma.$$

1930.]

The equation of the plane of the points θ , ϕ , θ_2 is

$$Bx_1 + Dx_3 - p_{21}Ax_4 = 0.$$

Its pole with respect to Q is given by

$$(20) \qquad \qquad p_{21}Ay + Dz - B\sigma$$

and its null-point by

$$(21) Dy + p_{12}Az - B\rho.$$

In view of (18), (19), (20), (21) we may state the following theorem.

THEOREM 2. The polar reciprocal of the line $l_{\theta\phi}$ with respect to Q is identical with its polar reciprocal as determined by the linear complex osculating R along l_{yz} .

The equation of the plane of the points ϕ , θ_1 , θ_2 , is

$$B(p_{12}\lambda x_1 + p_{21}\kappa x_2) - p_{12}[(p_{21}\kappa^2 + p_{12}\lambda^2)\nu - 2p_{21}\kappa\lambda\mu + 4q\kappa\lambda^2]x_3 + p_{21}[(p_{21}\kappa^2 + p_{12}\lambda^2)\mu - 2p_{12}\kappa\lambda\nu - 4q\kappa^2\lambda]x_4 = 0,$$

the null-point of this plane is given by

$$\begin{split} [(p_{21}\kappa^2 + p_{12}\lambda^2)\nu - 2\rho_{21}\kappa\lambda\mu + 4q\kappa\lambda^2]y \\ &+ [(p_{21}\kappa^2 + p_{12}\lambda^2)\mu - 2p_{12}\kappa\lambda\nu - 4q\kappa^2\lambda]z + B(\lambda\rho - \kappa\sigma), \end{split}$$

and this expression, when multiplied by 2q, becomes

$$(2q\lambda^2 + p_{21}A)\theta_1 - (2q\kappa^2 + p_{12}A)\theta_2.$$

Moreover the coordinates of this null-point satisfy the equation

$$\kappa x_1 + \lambda x_2 + \mu x_3 + \nu x_4 = 0,$$

of the plane π . We have thus the following theorem.

THEOREM 3. The null-point of the plane determined by the nullpoint of π and π 's two poles with respect Q_1 and Q_2 , lies on the line $l_{\theta_1\theta_2}$ at the point where it cuts π .

Many other interesting properties of this tetrahedron θ , ϕ , θ_1 , θ_2 , determined by π and R, can be obtained by methods similar to the above.

The University of Washington

528