$\left\{n_{2}\right\}$ of $\{n\}$ such that $n=n_{1}+n_{2}+2$ is an $\{n-1\}$, the V_{T-1}^{N-k+2} is a $\{T-1\}$ in $\{T\}$, for $T=T^{\prime}+T^{\prime \prime}+2$. Hence, we have

$$
N-k+2=1
$$

or

$$
N=k-1
$$

which was to be proved.
It is about impossible to state generally any proposition concerning the properties of the hypersurfaces of this type. The properties of some of them can be obtained readily.
The University of California

A NECESSARY AND SUFFICIENT CONDITION FOR THE NON-EQUIVALENCE OF ANY TWO RATIONAL GENERALIZED QUATERNION DIVISION ALGEBRAS*

BY A. A. ALBERT

Two algebras \mathfrak{H} and \mathfrak{B} over the same field F are called equivalent (or simply isomorphic) if it is possible to establish between their quantities a (1-1) correspondence such that if any quantities x and y of \mathfrak{A} correspond to X and Y of \mathfrak{B}, then $x+y, x y$ and αx correspond to $X+Y, X Y, \alpha X$ respectively for every α of F. We shall consider two generalized quaternion division algebras $\dagger \mathfrak{A}$ and \mathfrak{B} over the field of all rational numbers, R. Let \mathfrak{A} be given by
(1) $\mathfrak{X}=\left(e, i_{1}, j_{1}, i_{1} j_{1}\right), i_{1}{ }^{2}=\rho_{1} e, j_{1}{ }^{2}=\sigma_{1} e, j_{1} i_{1}=-i_{1} j_{1}$,
where e is the modulus of \mathfrak{A}, and ρ_{1} and σ_{1} are in R. Without loss of generality ρ_{1} and σ_{1} may be taken to be each products of distinct rational prime integers.

Similarly let
(2) $\mathfrak{B}=\left(E, I_{1}, J_{1}, I_{1} J_{1}\right), I_{1}{ }^{2}=\rho_{2} E, J_{2}{ }^{2}=\sigma_{2} E, J_{1} I_{1}=-I_{1} J_{1}$,

[^0]where ρ_{2} and σ_{2} are each products of distinct rational prime integers, and E is the modulus of \mathfrak{B}. Without loss of generality we may take $\sigma_{2}<0$ since one of $\rho_{2}, \sigma_{2},-\rho_{2} \sigma_{2}$ is negative and by changing the roles of $I_{1}, J_{1}, I_{1} J_{1}$ we may take σ_{2} to be the negative number. The rank equation of \mathfrak{A} is known (loc. cit.) to be
\[

$$
\begin{equation*}
\omega^{2}-2 \alpha_{4} \omega+\left(\alpha_{4}^{2}-\alpha_{1}^{2} \rho_{1}-\alpha_{2}^{2} \sigma_{1}+\alpha_{3}^{2} \sigma_{1} \rho_{1}\right)=0 \tag{3}
\end{equation*}
$$

\]

where the general quantity of \mathfrak{N} is $x=\alpha_{4}+\alpha_{1} i_{1}+\alpha_{2} j_{1}+\alpha_{3} i_{1} j_{1}$. We have obviously the following property

Lemma 1. A quantity x which is not a rational multiple of e has a rational multiple of e as its square if and only if

$$
\begin{equation*}
x=\alpha_{1} i_{1}+\alpha_{2} j_{1}+\alpha_{3} i_{1} j_{1}, \tag{4}
\end{equation*}
$$

in which case

$$
\begin{equation*}
x^{2}=\left(\alpha_{1}^{2} \rho_{1}+\alpha_{2}^{2} \sigma_{1}-\alpha_{3}^{2} \sigma_{1} \rho_{1}\right) e . \tag{5}
\end{equation*}
$$

Consider the form

$$
\begin{equation*}
q=\alpha_{1}^{2} \rho_{1}+\alpha_{2}^{2} \sigma_{1}-\alpha_{3}^{2} \sigma_{1} \rho_{1}-\alpha_{4}^{2} \rho_{2}-\alpha_{5}^{2} \sigma_{2} \tag{6}
\end{equation*}
$$

The signs of ρ_{1}, σ_{1} and $-\rho_{1} \sigma_{1}$ are the same if and only if $\rho_{1}<0$, $\sigma_{1}<0$. But we have taken $\sigma_{2}<0$, whence $-\sigma_{2}>0$ and has a sign different from that of $\rho_{1}<0$. The signs of the coefficients of q are therefore not all alike and they are all different from zero when \mathfrak{H} and \mathfrak{B} are division algebras. But every indefinite quadratic form in five variables is a null form* so that there exist integers $\alpha_{1}, \cdots, \alpha_{5}$, not all zero, for which $q=0$. Let $\alpha_{12}, \alpha_{22}, \cdots, \alpha_{52}$ be any set of integer solutions of $q=0$. The quantity $\rho^{\prime}=\alpha_{42}^{2} \rho_{2}$ $+\alpha_{52}^{2} \sigma_{2}$ is a rational integer equal to $\alpha_{12}^{2} \rho_{1}+\alpha_{22}^{2} \sigma_{1}-\alpha_{43}^{2} \sigma_{1} \rho_{1}$.

The quantities

$$
i^{\prime}=\alpha_{12} i_{1}+\alpha_{22} j_{1}+\alpha_{32} i_{1} j_{1}, \quad I^{\prime}=\alpha_{42} I_{1}+\alpha_{52} J_{1}
$$

have the properties that

$$
\left(i^{\prime}\right)^{2}=\rho^{\prime} e, \quad\left(I^{\prime}\right)^{2}=\rho^{\prime} E
$$

Since $\alpha_{12}, \cdots, \alpha_{52}$ are not all zero, i^{\prime} and I^{\prime} are not both zero quantities. Hence $\rho^{\prime} \neq 0$. But \mathfrak{A} and \mathfrak{B} are division algebras

[^1]so that $i^{\prime} \neq 0 e, I^{\prime} \neq 0 E$. If we write $\rho^{\prime}=\rho \pi^{2}$, where ρ and π are integers and ρ is a product of distinct primes, then, by replacing the $\alpha_{r 2}(r=1, \cdots, 5)$ by $\alpha_{r 1}=x_{r 2} / \pi$, we replace i^{\prime} by $i=i^{\prime} / \pi$, I^{\prime} by $I=I^{\prime} / \pi$ and ρ^{\prime} by ρ.

Lemma 2. There exist rational numbers $\alpha_{11}, \alpha_{21}, \cdots, \alpha_{51}$ with $\alpha_{11}, \alpha_{21}, \alpha_{31}$ not all zero and α_{41}, α_{51} not both zero, such that if

$$
\begin{equation*}
i=\alpha_{11} i_{1}+\alpha_{21} j_{1}+\alpha_{31} i_{1} j_{1}, \quad I=\alpha_{41} I_{1}+\alpha_{51} J_{1} \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
i^{2}=\rho e, \quad I^{2}=\rho E, \quad \rho=\alpha_{41}^{2} \rho_{2}+\alpha_{51}^{2} \sigma_{2} \tag{8}
\end{equation*}
$$

where ρ is a product of distinct rational prime integers.
Write $J=I_{1} J_{1}$. Then obviously $J I=-I J$ and $J^{2}=\delta E, \delta$ in R. By replacing J by a rational multiple of itself we may obviously take δ a product of distinct primes. If $\alpha_{21}=\alpha_{31}=0$, then by writing $j=j_{1}$, we have $j i=-i j$ and $j^{2}=\gamma e$ with γ in R. If α_{21} and α_{31} are not both zero, then let

$$
\begin{equation*}
j=\alpha_{31} \rho_{1} j_{1}+\alpha_{21} i_{1} j_{1} \neq 0 e \tag{9}
\end{equation*}
$$

whence $j^{2}=-\sigma_{1} \rho_{1}\left(\alpha_{21}^{2}-\alpha_{31}^{2} \rho_{1}\right) e=\gamma e$ with γ in R.
Using the multiplication table of \mathfrak{A}, we find

$$
\begin{align*}
j i= & \left(\alpha_{31} \rho_{1} j_{1}+\alpha_{21} i_{1} j_{1}\right)\left(\alpha_{11} i_{1}+\alpha_{21} j_{1}+\alpha_{31} i_{1} j_{1}\right) \\
= & -\alpha_{31} \alpha_{11} \rho_{1} i_{1} j_{1}+\alpha_{31} \alpha_{21} \rho_{1} \sigma_{1}-\alpha_{1} \rho_{31}^{2} i_{1} \tag{10}\\
& -\alpha_{21} \alpha_{11} \rho_{1} j_{1}+\alpha_{21}^{2} \sigma_{1} i_{1}-\alpha_{21} \alpha_{31} \rho_{1} \sigma_{1} \\
= & \left(\alpha_{21}^{2} \sigma_{1}-\alpha_{31}^{2} \rho_{1}\right) i_{1}-\alpha_{11} \alpha_{21} \rho_{1} j_{1}-\alpha_{31} \alpha_{11} \rho_{1} i_{1} j_{1}
\end{align*}
$$

while

$$
\begin{align*}
-i j & =-\left(\alpha_{11} i_{1}+\alpha_{21} j_{1}+\alpha_{31} i_{1} j_{1}\right)\left(\alpha_{31} \rho_{1} j_{1}+\alpha_{21} i_{1} j_{1}\right) \\
& =-\left(\alpha_{11} \alpha_{31} \rho_{1} i_{1} j_{1}+\alpha_{11} \alpha_{21} \rho_{1} j_{1}-\alpha_{21}^{2} \sigma_{1} i_{1}+\alpha_{31}^{2} \rho_{1} \sigma_{1} i_{1}\right) \tag{11}
\end{align*}
$$

Hence $j i=-i j$ and in all cases j is not a polynomial in i with rational coefficients. It follows that $e, i, j, i j$ are linearly independent with respect to R and form a basis of \mathfrak{A}. Similarly $E, I, J, I J$ are linearly independent with respect to R and form a basis of algebra \mathfrak{B}.

Theorem 1. By finding a single solution of a solvable diophantine equation we may represent any pair of generalized quaternion division algebras in the canonical form
(12) $\quad \mathfrak{U}=(e, i, j, i j), i^{2}=\rho e, j^{2}=\gamma e, j i=-i j$,
(13) $\mathfrak{B}=(E, I, J, I J), I^{2}=\rho E, J^{2}=\delta E, J I=-I J$,
with e and E respectively the moduli of \mathfrak{A} and \mathfrak{B}, where ρ, γ and δ are multiplication constants expressed in terms of the original multiplication constants of \mathfrak{A} and \mathfrak{B} and the above solution, and where, without loss of generality, ρ, γ, δ may be taken to be products of distinct rational primes.

We shall now discuss a necessary and sufficient condition that any two generalized quaternion division algebras \mathfrak{A} and \mathfrak{B} be equivalent. We take the pair in the canonical form (12), (13). Suppose that \mathfrak{A} and \mathfrak{B} are equivalent so that there exists a (1-1) correspondence between the quantities of \mathfrak{A} and \mathfrak{B} which is preserved under addition, multiplication and scalar multiplication. The modulus e of \mathfrak{A} will correspond to the modulus E of \mathfrak{B}. Let s in \mathfrak{A} correspond to I, and t correspond to J. Then $s^{2}=\rho e, t^{2}=\delta e$ and $t s=-s t$. But, by Lemma 1,

$$
\begin{equation*}
s=\lambda_{1} i+\lambda_{2} j+\lambda_{3} i j \tag{14}
\end{equation*}
$$

so that

$$
\begin{equation*}
s^{2}=\left(\lambda_{1}^{2} \rho+\lambda_{2}{ }^{2} \gamma-\lambda_{3}{ }^{2} \gamma \rho\right) e=\rho e, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}{ }^{2} \rho+\lambda_{2}{ }^{2} \gamma-\lambda_{3}{ }^{2} \gamma \rho=\rho, \tag{16}
\end{equation*}
$$

for rational $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Let first λ_{2} and λ_{3} be not both zero. Then if

$$
\begin{equation*}
t_{1}=\lambda_{3} \rho j+\lambda_{2} i j \tag{17}
\end{equation*}
$$

we have $t_{1} s=-s t_{1}, t_{1} \neq 0 e$, and

$$
\begin{equation*}
t_{1}{ }^{2}=\gamma\left[\left(\lambda_{3} \rho\right)^{2}-\lambda_{2}{ }^{2} \rho\right] . \tag{18}
\end{equation*}
$$

For we may evidently use here the proof (10), (11) by which we showed that $j i=-i j$. But $t s=-s t$, so that $t s t^{-1}=t_{1} s t_{1}{ }^{-1}$ and $\left(t_{1}^{-1} t\right) s\left(t_{1}^{-1} t\right)^{-1}=s$. It follows that $t_{1}^{-1} t$ is a polynomial in s and we may write

$$
\begin{equation*}
t=\left(\xi_{1} e+\xi_{2} s\right) t_{1}, \quad\left(\xi_{1} \text { and } \xi_{2} \text { in } R\right) \tag{19}
\end{equation*}
$$

Then $\delta e=t^{2}=\left(\xi_{1}{ }^{2}-\xi_{2}{ }^{2} \rho\right) t_{1}{ }^{2}=\left(\xi_{1}{ }^{2}-\xi_{2}{ }^{2} \rho\right)\left[\left(\lambda_{3} \delta\right)^{2}-\lambda_{2}{ }^{2} \rho\right] \gamma e$. Write $\eta_{1}=\xi_{1}\left(\lambda_{3} \rho\right)+\xi_{2} \lambda_{2} \rho, \eta_{2}=\xi_{1} \lambda_{2}+\xi_{2}\left(\lambda_{3} \rho\right)$, so that η_{1} and η_{2} are rational numbers. Then we have proved that, when λ_{2} and λ_{3} are not both zero,

$$
\begin{equation*}
\delta=\left(\eta_{1}{ }^{2}-\eta_{2}{ }^{2} \rho\right) \gamma \tag{20}
\end{equation*}
$$

Next let $\lambda_{2}=\lambda_{3}=0$. We have $s=\lambda_{1} i$ and $\lambda_{1}{ }^{2} \rho e=\rho e$ so that $\lambda_{1}=1, s=i$. We then take $t_{1}=j$ and have $t_{1}{ }^{2}=\gamma e$. As before $t=\left(\xi_{1} e+\xi_{2} s\right) t_{1}$ and, if we write $\eta_{1}=\xi_{1}, \eta_{2}=\xi_{2}$, we again have (20).

Conversely let (20) be true. Then \mathfrak{A} and \mathfrak{B} are equivalent under the correspondence

$$
\begin{equation*}
\mu_{1} e+\mu_{2} i+\mu_{3} t+\mu_{4} i t \sim \mu_{1} E+\mu_{2} I+\mu_{3} J+\mu_{4} I J \tag{21}
\end{equation*}
$$

where μ_{1}, \cdots, μ_{4} are independent variables in R and $t=\left(\eta_{1} e+\eta_{2} i\right) j$. For $i^{2}=\rho e, \quad I^{2}=\rho E, t^{2}=\delta e, \quad J^{2}=\delta E, \quad t i=-i t$, $J I=-I J$.

Theorem 2. Let \mathfrak{A} and \mathfrak{B} be any two generalized quaternion division algebras over R. Then they are equivalent* if and only if, when they are put in a canonical form (12), (13), we have

$$
\begin{equation*}
\delta=\left(\eta_{1}^{2}-\eta_{2}^{2} \rho\right) \gamma \tag{20}
\end{equation*}
$$

for rational η_{1} and η_{2}.
Necessary and sufficient conditions that (20) be true are known. Let the greatest common divisor of γ and δ be ν so that $\gamma \delta=\nu^{2} \epsilon$, where ϵ is a product of distinct primes. Then (20) is true if and only if

$$
\begin{equation*}
\epsilon=\eta_{3}{ }^{2}-\eta_{4}^{2} \rho=0 \tag{22}
\end{equation*}
$$

for rational η_{3}, η_{4}. Let the greatest common divisor of ϵ and ρ be π so that $\epsilon=\epsilon^{\prime} \pi, \rho=\rho^{\prime} \pi$. Then (20) is true if and only if

$$
\begin{equation*}
\epsilon^{\prime}=\pi \eta_{5}{ }^{2}-\rho^{\prime} \eta_{4}{ }^{2} \tag{23}
\end{equation*}
$$

[^2]for rational η_{5} and η_{4}, where now $\epsilon^{\prime}, \pi, \rho^{\prime}$ and $\epsilon^{\prime} \pi \rho^{\prime}$ are each products of distinct primes. Then (20) is true if and only if
\[

$$
\begin{equation*}
\pi \theta_{1}{ }^{2}-\rho^{\prime} \theta_{2}{ }^{2}-\epsilon^{\prime} \theta_{3}{ }^{2}=0 \tag{24}
\end{equation*}
$$

\]

for integer $\theta_{1}, \theta_{2}, \theta_{3}$ not all zero. For when (20) is satisfied so is (24) when we write $\eta_{5}=\theta_{1} / \theta_{3}, \eta_{4}=\theta_{2} / \theta_{3}$ with integer $\theta_{1}, \theta_{2}, \theta_{3}$. Conversely let (24) be satisfied for integer $\theta_{1}, \theta_{2}, \theta_{3}$ not all zero. If $\theta_{3}=0$ then $\pi \theta_{1}{ }^{2}-\rho^{\prime} \theta_{2}{ }^{2}=0, \pi \rho^{\prime}=\rho$, so that $\left(\pi \theta_{1}\right)^{2}-\rho \theta_{2}{ }^{2}=0$ contrary to the hypothesis that \mathfrak{N} is a division algebra and hence ρ is not a rational square. It follows from our definitions of $\epsilon^{\prime}, \pi, \rho^{\prime}$ that when (23) is satisfied so is (20). But (23) is satisfied by $\eta_{5}=\theta_{1} / \theta_{3}, \eta_{4}=\theta_{2} / \theta_{3}$. Hence (20) can be satisfied by rational η_{1}, η_{2} if and only if the form in (24) is a null form. Using a known result of the theory of numbers*, we have the theorem:

Theorem 3. Let $\gamma \delta=\nu^{2} \epsilon$ where ν and ϵ are integers and ϵ is a product of distinct primes. Let the greatest common divisor of ϵ and ρ be π so that $\rho=\rho^{\prime} \pi, \epsilon=\epsilon^{\prime} \pi$. Then two division algebras \mathfrak{H} and \mathfrak{B} in a canonical form (12), (13) are equivalent if and only if
$-\epsilon^{\prime} \rho^{\prime}$ is a quadratic residue of π, ϵ is a quadratic residue of ρ^{\prime}, ρ is a quadratic residue of ϵ^{\prime}.
As a corollary of Theorem 2 we shall establish the nonequivalence of any two of the D_{τ} algebras of L. E. Dickson (loc. cit., Chapter IX) which have different t 's. The D_{τ} algebras have $\rho=-1$ and $\gamma=\tau$ taken to be a product of distinct primes of the form $4 n+3$. Let $D_{\tau_{1}}$ and $D_{\tau_{2}}$ be two such algebras with $\tau_{1} \neq \tau_{2}$. Then $\tau_{2} \neq\left(\eta_{1}{ }^{2}+\eta_{2}{ }^{2}\right) \tau_{1}$ since otherwise we would have $\tau_{2} \tau_{1}$ expressible as a sum of two rational squares which is impossible when $\tau_{2} \tau_{1}$ contains a prime factor $4 n+3$ to an odd power. Hence, by Theorem 2, $D_{\tau_{1}}$ and $D_{\tau_{2}}$ are non-equivalent.

Columbia University.

[^3]
[^0]: * Presented to the Society, February 22, 1930.
 \dagger For the definition and properties of these algebras see L. E. Dickson, Algebren und ihre Zahlentheorie, pp. 46-49.

[^1]: * A theorem of A. Meyer, Vierteljahrschrift der Naturforschenden Gesellschaft in Zürich, vol. 29 (1884), pp. 209-222; see also Bachmann, Zahlentheorie, vol. IV $_{1}$, p. 266.

[^2]: * Any generalized quaternion algebra \mathfrak{A} is self-reciprocal under the correspondence given by $i \sim i, j \sim j, i j \sim j i$. Hence we may add the word "reciprocal" to the above.

[^3]: * See P. Bachmann, Arithmetik der Quadratischen Formen, Chapter 8.

