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NEW CRITERIA ASSOCIATED WITH FERMAT'S 
LAST THEOREM* 

BY JOHN MCDONNELL 

Furtwângler has obtained* by means of Eisenstein's law of 
reciprocity for residues of pth powers, p an odd prime, certain 
criteria in connection with the solution of the equation 

(1) xp + yp + zp = 0, 

where x, y, z are relatively prime rational integers, and these 
criteria involve the rational factors of x, y, z, y — z, z — x, x — y. 

I t is the object of the present article to employ the same 
method to derive similar criteria for the factors of 

x2 — yzy y2 — zxy z2 — xy, x2 + yz, y2 + zx, z2 + xy. 

THEOREM 1. If x, y, z satisfy equation (1), yz+zx+xy is 
prime to p, and r is any f actor of x2 — yz, then fP_1 = l (mod p2). 

PROOF. Let a be a pth root of unity. We have from the 
identity 

x(x + ya) — y{z + xa) = x2 — yz, 

the equation in £th power characters 

ƒ x(x + ya) | ƒ y(z + xa) \ 

or, since 

x and y being rational, we have 

ƒ x + ya\ ƒ z + xa\ 

* Presented to the Society, August 29, 1929. 
t Wiener Sitzungsberichte, vol. 121, Ha (1912), pp. 589-592. 



554 JOHN MCDONNELL [August, 

We shall now obtain further relations between the above 
characters from the theory developed in connection with 
Fermat's theorem. One, at least, of the numbers yy z must be 
prime to p. Assuming, first, that z is prime to p, we have from 
equation (1) the following well known result 

oo + y + z = 0 (mod p). 

Moreover, the ideal (x+ya) is the pth power of an ideal factor 
of z: the number x+ya is prime to 1+a, and is, consequently, 
associated with a semi-primary number of the formed (x+ya), 
where n is determined by the congruence 

nz = y (mod p). 

By Eisenstein's reciprocity theorem, we have* 
(an(x + ya)) ( r ) 

(3) \ — — } = < } = 1. 
I r ) \an(x + ya)) 

Again if y be prime to p we obtain similarly 

(am(z + xa)) 
(4) J_i H = l 

with my = x (mod p). 
If, now, yz be prime to p both equations (3) and (4) are 

satisfied and together with (2) yield the result 

m-- m* or 
m—n 

(5) W =1-m' From the congruences nz=y and my=x (mod p), we have 

(m — n)yz = zx — y2. 
Now 

zx — y2 = (yz + zx + xy) — y(x + y + z), 

x + y + z ^ 0 (mod p). 

yz + zx + xy ^ 0. 

* Furtwangler, loc. cit. 
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Hence m — n^O and, therefore, from (5) we have* 

(6) < — \ = 1, and r*>~1 s= 1 (mod p2). 

On the other hand, if yz be not prime to p, either y or z 
is divisible by p. Assuming firs-t that z is divisible, we have, 
from equation (1), the following results: 

x + y = 0 (mod p2), 

x + y a is divisible by 1 — a. 

Denoting the quotient (x+ya)/(l—a) by co, we see that the 
principal ideal (co) is the p h power of an ideal factor of z and, 
consequently, 

1. 
I CO J 

Furthermore 

{f}-
co = - y + (x + ;y)/(l — a), 

and x-\-y^=0 (mod £2); hence co is a primary integer, and by 
Eisenstein's theorem, 

Since x+ya— (1 — a)co, it follows that 

Again y is prime to p; consequently, from (4), 
r a~l (z + xa) (a~l(z + xa)\ 

m = — 1, (mod ƒ>)> 

or 

m-m-
Furtwângler, loc. cit 
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Substituting in (2), we have 

or, squaring, 

or 

{ ^ - ^ } - {7}' 

Dividing both sides by {a/r}, and noting that 

since a""1 — 2 + a is a real number, we obtain, 

and hence from (6) 

r*-1 s 1 (mod £2). 

A similar proof obviously holds when y is divisible by p. 

THEOREM 2. ƒƒ x, y, z satisfy equation (1), x(y — z) (x2+yz) is 
prime to p> and r is any factor of x2-\-yzf then 

r*-1 s 1 (modp2). 

PROOF. From the identity 

(x + ya)(x + zcC1) = x2 + yz + x(^a: + 2a - 1) , 

we readily obtain the equation 

( x+ ya\ ( x + ZOL~X \ ( ya + Staf"11 

Assuming, first, that yz is prime to p and remembering that 
x is so by hypothesis, we see that ya + za"1, x+za"1, x+ya 
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are all prime to 1—a and are, consequently, associated with 
semi-primary integers of the form al{ya-\-za~l)y am(x+zcrl), 
an(x+ya) respectively. From the reasoning developed in the 
previous theorem it is easily seen that 

ƒ al(ya+zor1)} (am(x + zorl)\ ( an(x + ya) | 

\ - ƒ = \ ; ; = t ; ; =1; 

hence, from (8), we have 

m 
m+n—l 

= 1. 

Now the congruences satisfied by /, m, n, namely 

lx = y — z, my = — z, nz = y (mod ^ ) , 

yield the congruence 

(m + n — /)x^s s — 22x + #3>2 — 3̂ 2(3; — z) > 

= (3/ — 3) [oc(y + z) — 3>z] (mod ^) 

= - (y - s)(x2 + y«), 

^ 0 , by hypothesis. 

Hence 

and from (6) 
m--
rp~l s 1 (mod £2). 

On the other hand if yz is not prime to p, either y or z must 
be divisible by p. Assuming z to be divisible and recalling the 
arguments in the corresponding case in Theorem I, we have 
immediately the following relations: 

jx+ya\ ƒ ! — a\ ( x + zor1} 

and 

(ya + zorl\ ( a \ (y + zor2\ ( a \ 
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From the above and from (8), we obtain 

and from (7) it follows that 

r^1 s 1 (mod p2). 

As before, a similar proof obtains when y is divisible by p. 

OTTAWA, CANADA 

ON T H E SOLUTION OF T H E EULER EQUATIONS 
FOR T H E I R HIGHEST DERIVATIVES* 

BY H . V . CRAIG 

1. Introduction. J. H. Taylor f has given two elegant methods 
of solving for their highest derivatives the Euler equations 
associated with the integral fF(x, x)dt. In this paper these 
two methods are modified so as to apply to the more general 
case in which the Euler equations contain derivatives of order 
higher than the second. 

2. Notation. Throughout this paper we shall employ vector 
notation and shall use dots and enclosed superscripts to indicate 
differentiation with respect to the parameter. Thus X j X ) X 
will stand for the sets 

dx' dx2 dxn dmxl dmx2 dmxn 

XX,X2, • • • , Xn] ; ; • • •) ; ) ; • • • ; ) 

dt dt dt dtm dtm dtm 

respectively. Partial derivatives will be denoted by means of 
subscripts, thus 

* Presented to the Society, September 7, 1928. This paper is a part of a 
thesis written at the University of Wisconsin under the direction of Professor 
J. H. Taylor. 

f J. H. Taylor, The reduction of Euler1 s equations to a canonical form, this 
Bulletin, vol. 31 (1925) p. 257. 


