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ON T H E DENSITY OF T H E CUT POINTS 
AND END POINTS OF A CONTINUUM* 

BY W. L. AYRES 

1. Introduction. We consider a connected, compact, metric 
space M which we refer to as the continuum M. The space 
M is said to be locally connected if for each point p of M and 
each e > 0 there exists a 5 > 0 and a connected set N such that 
S(p, ô) c N c S(p, e). A point p is said to be a cut point of M 
if M — p is not connected. A point p is said to be an end point 
of M if for each e > 0 there exists a neighborhood Up such that 
Up c S(p, e) and B(UP) = Uv— Up is a single point.f From this 
definition it is seen that every end point is a limit point of the 
cut points of M. Hence whenever the end points are dense in 
M, the cut points are also dense. This relation is not true con
versely, but a study of some examples leads one to the con
clusion that there exist some fundamental relations between 
the density of the cut points and the density of the end points. 
In this note we shall investigate some of these relations. 

2. Notation. Let K and E denote respectively the set of all 
cut points and end points of M. Let K2 denote the set of all 
cut points which are of Urysohn-Menger order 2 in M and let 
2K denote the set of all cut points which are of order > 2 . 
Capitals will denote sets of points, lower case letters single 
points. S(p, e) denotes the set of all points whose distance 
from p is less than e. The symbol p(x, y) denotes the distance 
from x to y\ p(X, Y) denotes the greatest lower bound of the 
numbers p(x, y) where xeX and XEY. The notations xeX and 
x non-8 X mean "x is a point of the set X" and ux is not a point 
of X" respectively. The symbol d(X) denotes the diameter of 
X, that is, the least upper bound of all numbers p(x, y) where 
xeX and ysX. 

* Presented to the Society, August 30, 1929. 
f We use end point here in the Urysohn-Menger sense. See P. Urysohn, 

Comptes Rendus, vol. 175 (1922), pp. 481-483; and K. Menger, Mathe
matische Annalen, vol. 95 (1925), pp. 277-306. For other senses in which the 
term has been used, see H. M. Gehman, Concerning end points of continuous 
curves and other continua, Transactions of this Society, vol. 30 (1928), pp. 63-84. 
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3. THEOREM. If the end points are dense in M — K, the cut 
points are dense in M. 

Since each end point is a limit point of the cut points, we 
have__2 c ~R. By hypothesis, M-K c Ê. Then M-K c K. As 
KcK, we have M=K. 

4. THEOREM. In order that the cut points of a locally con
nected continuum M be dense in M it is necessary and sufficient 
that the end points be dense in M — K. [(K = M) = (ED M — K).] 

The condition is sufficient by the preceding theorem. Now 
let peM—K — E and choose e>0 . There exists just one maximal 
cyclic set C of M containing p.* By hypothesis there exists a 
q{ eK-S(p, e/2). If q{ eC, let qi = q{ and let Hi be a component 
of M—qi such that H r C = 0. If q{ non-8 C, let Hi be the com
ponent of M—C containing q{ and let qisC-Hi. Evidently 
qi—CHi and qi^p. There exists an integer m2>2 such that 
S(p, e/m2)'Hi==0. Let qizK-S(p} e/m2). If qizC, let q^^qi 
and H2 be a component of M — q^ such that H2-C=0. If 
qi non-8 C, let H2 be the component of M—C containing qi 
and let q2=CH2- We see quite easily that H2-Hi = 0 and q2 ̂  p. 
In general there exists an integer m»>Wi_i(i>l) such that 
S(p, e/nti) - ^ „ 1 = 0. Let q{ zK-S(p, e/rrii) and we find iJ; and 
qi from this exactly as above. Again we have qi^p and 
Hi'Hj = 0. Then we have an infinite set of distinct components 
of M-C, Hu H2, iJ3, • • • , such that 

(1) Hi 3 qi, lim qi = p} 

(2) Î7rC = g , ^ . 

Since M is locally connected it follows from (1) and (2) that 

(3) lim qi = p. 
i—>oo 

Now as d(iï*) approaches zero it follows from (3) that there 

* We are using the term maximal cyclic set in place of Whyburn's term 
maximal cyclic curve. For definitions and properties of maximal cyclic sets, 
see G. T. Whyburn, Cyclicly connected continuous curves, Proceedings of the 
National Academy of Sciences, vol. 13 (1927), pp. 31-38. These results are 
extended to metric space in my paper, Concerning continuous curves in metric 
space, American Journal of Mathematics, vol. 51 (1929), pp. 577-594. 
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exists an integer n such that S(p, e) D Hn. If Hn is cyclicly 
connected, then HnK = qn. Then no point of Hn is a limit point 
of K contrary to hypothesis. Then Tln is not cyclicly connected 
and thus contains two nodes of itself.* One of these nodes N 
does not contain qn. Either N is an end point of Hn or N is a 
maximal cyclic set of Tln containing just one cut point of Un-
But in this last case N is a maximal cyclic set of M and contains 
just one point of K. But this is impossible just as above. 
Hence N is an end point of Hn and it is not difficult to see that 
NEE. Then for each e > 0 there exists an NeE-S(p, e). Hence 
peÊ. 

5. Example. We may see quite simply that the condition 
of the preceding theorem is not necessary without the restric
tion that M be locally connected. Let M be the curve y = sin 1/x 
for 0 < x ^ l together with the points of the 3>-axis for which 
— l^y^l. Then ~K — M but the points of M on the ^-axis 
belong to M — K and no one of them belongs to E. In fact E is 
the single point (1, sin 1). 

6. THEOREM. In order that the end points of a locally connected 
continuum M be dense in M it is necessary and sufficient that the 
cut points of order > 2 be dense in M. [(E = M) = (2K = M). ] 

The condition is necessary. Since E ^ O , the continuum M 
is not cyclicly connected. Then if M contains a maximal cyclic 
set C, each component of M—C has just one limit point in C 
and thus C-K^O. Further C-K=C'2K, for if xsC-K there 
exist at least three arcs meeting at x (two arcs on a simple 
closed curve of C containing x and one arc in a component 
oi M—C whose limit point is x) and so x is of order ^ 3 in M. 

Now let pzE. If p non-e 2 Z, there exists a neighborhood 
Up such that Up-

2K = 0. As pzE there exists a neighborhood 
Vv such that Vv c Uv and B(Vv)==q, a single point. Let A\ 
be an arc of M with end points p and q and let yzAi — p — q. 
Evidently AiC yp. From the local connectivity there exists 
a neighborhood Wy c Vp — p such that if zeWy then there is 
an arc from z to y which lies in Vv. As E = M let zeEWy. 
Then zsM—Ai. Let A2 be the arc of M joining z and y such 

* G. T. Whyburn, Concerning the structure of a continuous curve, American 
Journal of Mathematics, vol. 50 (1928), pp. 167-194, Theorem 14. 
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that Vp D A%. In the order from z to y let w be the first point 
of A i on A 2. The point w^p for peE and thus is not interior 
to an arc of M. The point w is of order ^ 3 since there are at 
least three arcs (subarc wp of Ai, subarc wq of Ai, subarc wz 
of A 2) meeting in w. Then w non-e K since Vp

2K = 0. As w 
non-8 K there exists an arc A^cM—w with end points z and p. 
It is easy to see that VP^AS. From the set ^41+^2+^4 3 we 
may obtain a simple closed curve / c VP. Let C be the maximal 
cyclic set containing / . In the preceding paragraph we saw 
that C2K^0. But CcVp<zUp and Up-

2K = 0. Then the 
assumption that p non-e 2K leads to an absurdity. Hence 
Ec2K. But M=K Then M = 2K, which is the desired relation. 

The condition is sufficient. From the result of §4 we have 
the set F= M — KcJË and thus F c E . If C is a maximal cyclic 
set of M, all but a countable number of points of C belong to 
M-K. Then CcF. Let peM-F which is of order 2 in M 
and let Up be a neighborhood of p. There exists a number 
€ i>0 such that S(p, ei)-F = 0 and £(£, €1) c UP. If J is any 
simple closed curve of M, S(p, e1)J = 0. As psK there is 
an arc A c Up and containing ?̂ as an interior point. Since 
2K = M, there is a point qiz2K-S(p, ex). If gi&4, let Xi = qi. 
In this case there is a component i^i of M — A such that 
#i--4 =^1 = ^1. If q\ non-8 A, let Hi be the component of M — A 
containing qx. The set Hi-A is a single point xi for otherwise 
there exists a simple closed curve J" such that J-Sip, e i )^0 . 
Since p is of order 2, p^Xi. There exists a number 0 < e 2 < | € i 
such that 5(^, €2) F i = 0. Letg2€22?-S(£, €2). If qtfA, let ç2 = x2 

and there is a component 7/2 of M — A such that 772 A = g2 = #2. 
If g2 non-e A, let iJ2 be the component of M—A containing q2 

and let x2eH2A. As above #2 = # 2 A since J-S(p, €i)=0 for 
every simple closed curve / . Continue this process indefinitely. 
In general there exists a number 0<€ n<^€ n_i such that 
S(p, € W ) - (F !+F 2 + • • • + Hn^)=0. Let qnz

2K-S{p, en) and 
define xn and Hn as above. Thenxn^p. 

From the connectedness im kleinen of M we have 

(4) lim xn = p, lim d(Hn) = 0. 

From this it follows that there exists an integer m such that 
HmcS(p, €1). The locally connected continuum Hm is acyclic 
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since J-S(p, €t)=0 for each simple closed curve of M. Then 
every node of Hm is an end point of Hm. This set contains at least 
two nodes and thus there is a point z^xm which is an end point 
of Hm. I t is clear that zeE. Then z c Hm c S(p, €1) c Uv. 
Therefore peE. 

We have M-K+K2 c E, and M- (M-K+K2) = 2K. By a 
theorem of G. T. Whyburn,* the set 2K is countable and thus 
contains no open subset of M. For this reason 2K c E. 

7. The Necessity of Local Connectivity. We shall show now 
that the condition of the preceding theorem is neither neces
sary nor sufficient unless M is locally connected. That the 
condition is not sufficient follows from the first two properties 
of a continuum M described in the next paragraph. 

There exists a continuum M with the following properties: 
(1) M has no end point, (2) the cut points of order >2 are dense 
in M, (3) the set of cut points of order 2 is an uncountable zero-
dimensional set which is dense in M. 

Let a, b, c be the points (0, 0), (1, 1), (1, - 1 ) . Let Mi = abc, 
where by such a symbol we will mean the set of all points of the 
triangle plus all interior points. Let Xi be the number 1 — 1/2*. 
Let yi be the ith number in the series 0, \, 0, —7/8, • • • , 
that is, 3>Ï = 0 , xi-i or —Xi-i according as i is of the form 2» + l, 
4n + 2 or 4tn. Let pi (i = l, 2, • • • ) be the point (xit yi). Let 
Ui and Vi (i = 0, 1, 2, • • • ) be the upper and lower end points 
of a vertical segment of length 1/2* with pi+\ as mid-point. 
Let po = a. Let 

00 

M 2 = bc + ^piUiVi. 

Now let Ti be the collineation such that Ti(a)=pu Tl(b)=U{, 
Ti{c)=Vi. Let 

OO 

Ms = J2Ti(M2). 

In general let A be a maximal triangle of Mn-\ and p&, u& and 
VA be the left-, upper right-, and lower right-hand vertices of A. 
Let TA be the collineation such that TA(a)=pA, TA(b)=uA, 
TA(C) =VAI and let 

* G. T. Whyburn, Concerning collections of cuttings of connected point sets. 
this Bulletin, vol. 35 (1929), pp. 87-104, Theorem 13. 
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for every A c Mn-i* Now let 
00 

G= HMn. 

The set G is a continuum such that every vertical line 
x = k(0^k^l) intersects it in a single point or in an interval 
which is a side of one of the triangles A at some stage. The 
mid-point of each of these intervals (except be) is a cut point 
of G of infinite order due to the oscillation of the set to the left 
of the point. It is easily seen that these cut points are dense in 
G. The point a is the only end point of G. Let H be the re
flection of G in the y-axis, and let M = G+H. Then the con
tinuum M has properties (1) and (2). 

Except for a countable number of values of k, the line 
x = k( — l ^ & ^ l ) intersects M in a single point. Let q be any 
such point. The point q = a is obviously a cut point of order 2 as 
it is of order 1 in both G and H. If q^a, then q is interior to some 
such point. Then q — a is obviously a cut point of order 2 as it 
is of order 1 in both G and H. If q^a, then q is interior to some 
triangle A of Mn at each stage. If e>0 , there exists an integer 
n such that the triangle A of Mn containing q is of diameter 
< | e and a non-cA. The triangle A contains just two limit 
points of that part of M outside A (its left-hand vertex and the 
mid-point of the vertical side). From this it is easy to see that 
we may obtain a quadrilateral Q of diameter <e which has 
just these two points in common with A, encloses the rest of A, 
and has in its exterior M—A. Then the interior of Q is a neigh
borhood of q of diameter <e whose boundary has just two 
points in common with M. Hence q is of order 2. That dim 
K2 = 0 follows at once for both points of M -B(Q) belong to 2K. 
This gives dime K2 = Q for q^a. It is also easy to see that 
dimaiT2 = 0. 

We shall proceed to show now that the condition of the pre
ceding theorem is not necessary unless M is locally connected, 
that is, 

There exists a continuum M, which contains no cut point of 
order > 2 , and yet the end points are dense in M, 

Let [rn] denote the rational points in the interval (0, 1), 
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except 0, arranged in a sequence. Let fn(x) = (\/n2) [sin l/(x — rn)] 
for x^rn; fn(x) = 0 for x = rn ( O ^ x ^ l ) . Let 

00 

F(x) = ]£ƒ«(*)• 
n = l 

Let II be the set composed of the graph of F{x) and its limit 
points.* The following properties of II may be easily verified: 
(a) H is a continuum, (b) every line x = k(QSk^l) intersects 
II in either a point or an interval, (c) every such point is a cut 
point of II of order 2, (d) the set of all such intervals is a count
able set, (e) H contains no cut point of order >2 , (f) the point 
(0, F(0)) is the single end point of H. 

Now we may transform the set H into a set M± such that (1) 
the point (0, F(0)) of H becomes the point a = (0, 0), (2) the 
upper and lower end points of the interval of II containing 
(1, F(l)) become the points 6 = (1, 1) and c— (1, —1), (3) every 
point of Mi lies in or on the triangle abc, (4) the properties 
(a)-(f) remain true for Mi. In fact we may make this trans
formation so as not to change the x-coordinate of any point. 

For each interval In of Mi let Wn be a wedge-shaped region 
bounded by two planes through In making equal angles with the 
:ry-plane, two planes through the end points of In perpendicular 
to In and a plane parallel to the x^-plane. Evidently the regions 
Wn may be taken so that 

Wi-Wj = 0 (t 5* j), and d(Wn) < l / « . 

Let (an, bn, 0) and (an, cny 0) be the end points of In(bn>cn), 
and let dn be a number such that the point (aw, %(bn + cn), dn) 
lies in the interior of Wn. Let ^fn be the transformation X ("m 
yf = h(^n + cn)+^(bn — Cn)y, z'= ~dnx+dn. Let 

00 

M2 = 2> n ( J l f i ) . 
n = l 

* See W. A. Wilson, On the structure of a continuum, limited and irreducible 
between two points, American Journal of Mathematics, vol. 48 (1926), p. 162. 
The continuum H may also be constructed by methods similar to the previous 
example by building up oscillations both right and left. However the de
scription becomes rather intricate. Also the previous example may be set up 
by the Cantor method of condensation of singularities but its properties appear 
somewhat clearer by the use of the triangles A. 



666 W. L. AYRES [October, 

Let Inm be the intervals of ^n{M\) except for In, and for each 
Inm we take a wedge-shaped region Wnm such that Wni'Wnj 
= 0(*Vj), d(Wnm)<l/(n+m), Wnm- (M1 + M2) =/nm, Wnmcm-
terior Wn. Now we define a linear transformation tynm such 
that SFnm(ikfi) is a set homeomorphic with ikfi and lying in 
Wnm except for Inm, just as above. Let 

M3 = Z 2>»«(^l)-
n m 

Continue this process indefinitely. Now let 

00 

M = Y,Mi. 

The set M is the required example. To simplify the description 
as far as possible we have defined M as lying in euclidean 
three-space. However, on careful examination of M it may be 
seen that M can be mapped in the plane. 

8. THEOREM. If the end points are dense in M, then dim M2 S 0. 

In a paper not yet published,* I have proved that for the set 
M2, that is, the points of M of order 2, we have the following 
relation : 

M2 = H +G, 

where (1) dim H^O, (2) G is a vacuous or countable set of 
arcs Ai, (3) each arc-segment Ai is an open subset of M. Now 
if we suppose that dim ikf2>0, it follows from this result that 
the set G contains at least one arc A\. Let p be an interior 
point of A\. From property (3) there exists a neighborhood 
Up cAi c M2. Hence UpE — 0 contrary to the hypothesis of 
our theorem. 

COROLLARY. If the end points are dense in M, then dim K2 S 0. 

9. THEOREM. In order that the end points of a locally connected 
continuum M be dense in M it is necessary and sufficient that the 
cut points be dense in M and dim K2^0. [(E = M)^(K = M) 
• (d imi£ 2 ^0) . ] 

* On the regular points of a continuum. This paper has been submitted to 
the Transactions of this Society. See an abstract in this Bulletin, vol. 36 
(1930), p. 485. 
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The conditions of the theorem are necessary by the results of 
§3 and the corollary of §8. We may show that the conditions 
are sufficient by an argument following closely that used in 
proving the sufficiency of the condition in §6. 

The first example of §7 shows that the conditions of the 
theorem are not sufficient if we do not specify that M is locally 
connected. 

T H E UNIVERSITY OF MICHIGAN 

ON T H E GENERALIZATION OF TRIGONOMETRIC 
I D E N T I T I E S IN ARITHMETICAL 

PARAPHRASING* 

BY H. T. ENGSTROMf 

1. Introduction. Identities of the type 

m n 

(1) X^as sin asx = ^2(3tsinbtX, 

where as, as, fit, bt are rational integers, arise in the comparison 
of like powers of the modulus when an elliptic function is repre
sented in more than one way by trigonometric series. The fol
lowing theorem is used in obtaining arithmetical results from 
such identities. 

THEOREM 1. If g(x) is an arbitrary, single-valued, oddfunctiont 

defined for x — as, 5 = 1, 2, • • • , m, and x = bt, t = \, 2, • • • , n, 
then (1) implies 

(2) Z«.g(a.) = ÈM&i). 
8=1 t=l 

Similarly, for cosines, we have the following statement. 

THEOREM 2. If f{x) is an arbitrary, single-valued, even func
tion, defined f or x = as, s = 1, 2, • • • , m, and x = bt, t=l, 2, • • • , 
n, then 

m n 

(3) ^2as cos aax = ]>j8$ cos b^x 

* Presented to the Society, April 5, 1930. 
f National Research Fellow, California Institute of Technology. 


