ON SURFACES IN SPACES OF FOUR AND FIVE DIMENSIONS

BY B. C. WONG
It is known that an algebraic surface in 4 -space has four essential characteristics in terms of which all its other characteristics can be expressed. Severi* considers as essential the following: n, the order of the surface; a, the order of the tangent cone of its projection in a 3-space; t, the number of its apparent triple points; and n^{\prime}, the number of 3 -spaces that can be constructed tangent to it and passing through a given point.

In order to know anything about a surface in 4 -space, it is, then, necessary to know its four essential characteristics. Of course, n may always be assumed. Unless some independent means be found whereby the other three characteristics, a, t, n^{\prime} can be calculated, we cannot know very much about the surface. It is our purpose in this paper to present a method for the independent determination of these three characteristics.

Let $F^{\prime n}$ denote a surface of order n in 4 -space, and if the surface is the projection of a surface of the same order in 5 -space, let F^{n} denote the latter. We introduce three other characteristics of $F^{\prime n}: b$, the order of the cone of lines passing through a general point in S_{4} and meeting $F^{\prime n}$ twice; j, the number of tangent lines of $F^{\prime n}$ passing through a given point; and d, the number of improper double points \dagger on $F^{\prime n}$.

The seven characteristics are connected by the following relations: \ddagger

$$
\begin{aligned}
& a+2 b=n(n-1), \quad j+2 d=n(n-1)-a \\
& j=\frac{1}{4}\left[a(3 n-4)-n(n-1)(n-2)+6 t-2 n^{\prime}\right] \\
& d=\frac{1}{8}\left[n(n-1)(n+2)-3 n a-6 t+2 n^{\prime}\right]
\end{aligned}
$$

[^0]From these relations we see that, n being assumed, if a, t, n^{\prime} are known, j and d are determined. On the other hand, if we know t and any two of the three quantities a, j, d, we can calculate n^{\prime}. Our method will, however, enable us to determine directly all the four quantities a, j, d, and t.

Consider a surface F^{n} of order n in S_{5} and let it be the complete intersection of three hypersurfaces $V_{4}{ }^{\lambda}, V_{4}{ }^{\mu}, V_{4}{ }^{\nu}$ of orders λ, μ, ν respectively. We shall represent F^{n} symbolically* by means of $n=\lambda \mu \nu$ triads (x, y, z) whose elements x, y, z are to take on all the integral values from 1 to λ, μ, ν respectively. Thus, the surface F^{8} common to three hyperquadric surfaces will be represented by the eight triads $(1,1,1)$, $(2,1,1),(1,2,1)$, $(1,1,2),(1,2,2),(2,1,2),(2,2,1),(2,2,2)$. If one of the hypersurfaces, say $V_{4}{ }^{\nu}$, is a hyperplane S_{4}, the surface is a 4 -space $F^{\prime n}$ of order $n=\lambda \mu$ lying in S_{4} and will be represented by the $\lambda \mu$ triads $(x, y, 1)$.

Any triad taken alone in this representation of F^{n} represents a plane forming a part of F^{n}. Any pair of triads with two corresponding elements alike, as $(1,1,1),(1,1,2)$ or $(1,2,3),(4,2,3)$ represents a quadric surface or a pair of planes with a line in common. If two of the corresponding elements are different, as $(1,1,1),(1,2,2)$ or $(1,2,3),(4,1,3)$, we have a pair of planes intersecting in a point; but if all the three corresponding elements are different, the two planes have no point in common.

Now we determine the characteristic a. It is not difficult to see that a is the order of the hypersurface formed by the ∞^{1} tangent 3 -spaces of F^{n} that pass through a given plane α in S_{5}. Consider a quadric surface F^{2} given in a general S_{3} of S_{5}. Since S_{3} has only a point in common with α, the ∞^{1} tangent 3-spaces of F^{2} passing through α form a hypersurface $V_{4}{ }^{2}$ of order 2. If F^{2} degenerates into two planes which must have a line in common, $V_{4}{ }^{2}$ degenerates into the hyperplane determined by α and the line, counted twice. From this we infer that, in general, if F^{n} contains N double lines, the order of the hypersurface of tangent 3 -spaces passing through a given plane is $a-2 n$. Suppose F^{n} be composed entirely of planes, $n=\lambda \mu \nu$ in

[^1]number. The number N of double lines on this degenerate F^{n} is equal to the number of pairs of triads in the representation of F^{n} with two corresponding elements alike. As F^{n}, degenerated in this way, cannot have proper tangent 3 -spaces, we have $a-2 N=0$ or $a=2 N$.

To find N, we notice that, for all the integral values of x and y from 1 to λ and μ respectively, we have $\lambda \mu \nu(\nu-1) / 2$ pairs of triads of the nature described above. Permuting λ, μ, ν and adding the results, we have $N=\lambda \mu \nu(\lambda+\mu+\nu-3) / 2$ and, therefore $a=\lambda \mu \nu(\lambda+\mu+\nu-3)^{*}$ is the required formula for a.

Now we proceed to determine j. Consider a pair of triads with two corresponding different elements representing a pair of planes having a point in common. Any plane through this point and through a given line g in S_{5} is to be considered a tangent plane of F^{n} through g, counted doubly. Any plane through g and tangent to a non-degenerate F^{n} gives rise to a line through a point in an S_{4} and tangent to the projection $F^{\prime n}$ in S_{4}. Then, the number of tangent planes of F^{n} passing through g which is equal to the number of tangent lines of $F^{\prime n}$ passing through a given point in S_{4} is the number j we are seeking. But if F^{n} be decomposed into n planes, there will be no proper tangent planes. Through a given line pass a certain number, N^{\prime}, of planes each passing through a point in which two planes of F^{n} as represented above intersect. As each such plane counts twice as a tangent plane of F^{n}, we have $j=2 N^{\prime}$.

To calculate N^{\prime}, we find that, for a fixed value of x, the number of pairs of triads such that the y - and z-elements of one of the triads in any pair are different from the corresponding elements of the other triad of the same pair is given by the expression $\mu \nu(\mu-1)(\nu-1) / 2$. By allowing x to vary from 1 to λ, we have $\lambda \mu \nu(\mu-1)(\nu-1) / 2$. Permuting λ, μ, ν and adding, we have the total number N^{\prime} of the desired pairs of triads in the representation of F^{n}. Therefore, twice this number is

$$
j=\lambda \mu \nu(\mu-1)(\nu-1)+(\nu-1)(\lambda-1)+(\lambda-1)(\mu-1) .
$$

To derive a formula for d, we consider a pair of triads with

[^2]corresponding elements all unlike. The planes they represent are all skew and there is just one line passing through a given point and incident with these planes. Such a line gives rise to an improper double point on the projection $F^{\prime n}$ of F^{n} in S_{4}. Hence, the total number of pairs of triads in the representation of F^{n} of the nature just described is the number d. As each of the λ integral values of x is to be combined with each of the μ integral values of y and also with each of the ν integral values of z, we have
$$
d=k \lambda \mu \nu(\lambda-1)(\mu-1)(\nu-1),
$$
where k is a yet unknown constant. By actual trial for the case $\lambda=\mu=\nu=2$, we find $d=4$ and, therefore, $k=1 / 2$. Then
$$
d=\frac{1}{2} \lambda \mu \nu(\lambda-1)(\mu-1)(\nu-1)
$$
is the required formula.
It is to be noted that if one of the three hypersurfaces, say $V_{4}{ }^{\nu}$, is a hyperplane S_{4}, that is, $\nu=1$, we have
$$
d=0, j=\lambda \mu(\lambda-1)(\mu-1)
$$

That is, the surface $F^{\prime n}$ of order $n^{\prime}=\lambda \mu$ which is the complete intersection of two hypersurfaces $V_{3}{ }^{\lambda}, V_{3^{\mu}}$, in S_{4} cannot have improper double points and cannot be the projection of a surface of the same order in S_{5}. The number of its tangent lines passing through a given point in S_{4} is always twice the order of the cone of lines passing through a given point and incident with the surface twice.

It remains to determine t. For this purpose we consider triples of triads in the representation of F^{n}. The triples that we need are of four types. Those of type I each represent three planes lying in a 4 -space. Two corresponding elements of the triads of such a triple must be different, as (1,1,1), (1,2,2), $(1,3,3)$ or $(1,1,1),(3,1,2),(2,1,4)$. Those of type II each represent three planes lying two by two in three 4 -spaces. Every pair of triads of such a triple must have one and only one element in common, as for example, $(1,1,1),(1,2,2),(2,1,2)$ or $(1,2,1),(1,4,3),(2,2,3)$ or $(1,2,3),(1,4,2),(3,2,2)$. Type III consists of those triples each of which represents three planes such that two of them lie in a 4 -space and the third may or may not lie in another 4 -space with one of them. Two of the triads of
such a triple must have one element in common and the third may or may not have one of the remaining elements in common with one of them. Examples are (1,1,1), (1,2,2), $(2,3,2) ;(1,1,1)$, $(1,2,3),(2,3,2)$. Type IV consists of all those triples the triads of each of which have all their corresponding elements different, as $(1,1,1),(2,2,2),(3,3,3)$ or $(1,2,3),(2,3,1),(3,1,2)$. The planes represented by such a triple are all skew.

The three planes represented by any triple belonging to any of these four types are such that through a given line in S_{5} not incident with them passes just one plane meeting them each in a point. Such a plane gives rise to an apparent triple point on the projection $F^{\prime n}$ of F^{n} in S_{4}. Hence, to find t is to find the sum of the numbers $T, T^{\prime}, T^{\prime \prime}, T^{\prime \prime \prime}$ of the triples of points belonging to the four types, respectively, obtained from the representation of F^{n}.

Reasoning in a manner analogous to that in which the formulas for a, j, d are derived, we obtain the following, which can be verified without difficulty:

$$
\begin{aligned}
T= & \frac{1}{6} \lambda \mu \nu[(\mu-1)(\mu-2)(\nu-1)(\nu-2) \\
& +(\nu-1)(\nu-2)(\lambda-1)(\lambda-2) \\
& +(\lambda-1)(\lambda-2)(\mu-1)(\mu-2)], \\
T^{\prime}= & \lambda \mu \nu(\lambda-1)(\mu-1)(\nu-1), \\
T^{\prime \prime}= & \frac{1}{2} \lambda \mu \nu(\lambda-1)(\mu-1)(\nu-1)(\mu \nu+\nu \lambda+\lambda \mu-12), \\
T^{\prime \prime \prime}= & \frac{1}{6} \lambda \mu \nu(\lambda-1)(\lambda-2)(\mu-1)(\mu-2)(\nu-1)(\nu-2) .
\end{aligned}
$$

Then we have $t=T+T^{\prime}+T^{\prime \prime}+T^{\prime \prime \prime}$.
So far, we have dealt with surfaces which are complete intersections of hypersurfaces. It remains to say a few words concerning those surfaces which are partial intersections. For $n<\lambda \mu \nu$, we still have n triads in the symbolic representation of F^{n}. These n triads must be such that any of them has two corresponding elements in common with at least one other element. Every non-degenerate F^{n} has its own representation and every arrangement or group of n triads whose elements satisfy the above requirement represents a non-degenerate F^{n} in S_{5}. Given an F^{n}, we find the characteristics a, j, d, t of its projection $F^{\prime n}$ in S_{4} by counting the numbers of the respective pairs and triples of triads in its representation of the nature already explained. Let us illustrate.

A surface F^{4} of order 4 in S_{5} is of one of three types, represented respectively by the triads

$$
\begin{equation*}
[1] \quad[2] \quad[3] \tag{4}
\end{equation*}
$$

(a) $(1,1,1),(2,1,1),(1,2,1),(1,1,2)$;
(b) $(1,1,1),(1,2,1),(1,2,2),(2,2,2)$;
(c) $(1,1,1),(1,2,1),(1,1,2),(1,2,2)$.

According to the principle explained above, it is not difficult to see that an F^{4} represented by (a) is a Veronese quartic surface in S_{5}. Its projection $F^{\prime n}$ in S_{4} has one ($t=T^{\prime}=1$) apparent triple point, for there is only one triple of triads given by [2], [3], [4] belonging to one of the four types explained above, indeed belonging to type II ; and has no ($d=0$) improper double point, for there is no pair of triads with corresponding elements all unlike. The projection of $F^{\prime n}$ in an S_{3} is a Steiner's quartic surface and has one triple point and three double lines. As the number of pairs of triads with two corresponding elements different is 3 , given by [2], [3]; [3], [4]; [2], [4], there are $j=2 \cdot 3=6$ pinch-points on this projected surface in S^{3}; and as the number of pairs of triads with two corresponding elements alike is also 3 , given by [1], [2]; [1], [3]; [1], [4], the tangent cone is also of order $a=2 \cdot 3=6$.

Examining the four triads of (b) and those of (c) in a similar manner, we find that an F^{4} represented by (b) has for projection in S_{4} an $F^{\prime n}$ for which $a=6, d=1, j=4$, and $t=0$. Its projection in S_{3} is a ruled quartic surface with a double twisted cubic curve upon which lie four pinch-points and no triple point. We also find that the surface represented by (c) is already a 4 -space surface, the Segre quartic surface, being the complete intersection of three hypersurfaces in S_{5} one of which is a hyperplane and the other two are of order 2 . The formulas above derived apply and we find $a=8, j=4, d=0, t=0$. Its projection in S_{3} has a double conic on which are four pinchpoints.

For other values of n we proceed in the same manner. Of course, when n is large, this process of counting is laborious but the desired characteristics can invariably be found.

[^0]: * Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a'suoi punti tripli apparenti, Rendiconti di Palermo, vol. 15 (1901), pp. 33-51.
 \dagger An improper double point Q is one such that an S_{3} through it meets the surface in a curve with an actual double point at Q and of the same deficiency as that of a general 3 -space section of the surface.
 \ddagger Severi, loc. cit., pp. 34-36.

[^1]: * B. C. Wong, On the number of apparent triple points of surfaces in space of Jour dimensions, this Bulletin, vol. 35 (1929), pp. 339-343; and On the number of apparent multiple points of varieties in hyperspace, this Bulletin. vol. 36 (1930), pp. 102-106.

[^2]: * This formula can be obtained by the same method as that employad by Salmon to determine the rank of a 3 -space curve which is the complete intersection of two surfaces. See Salmon, Analytic Geometry of Three Dimensions, 6 th ed., vol. I, Paragraphs 342, 343.

