A SET OF CYCLICLY RELATED FUNCTIONAL EQUATIONS*

BY W. M. WHYBURN

An examination of the first-order differential equation $y^{\prime}=p(x) y$ and the second-order system $y^{\prime}=p(x) y+q(x) z$, $z^{\prime}=p(x) z+q(x) y$, where $p(x)$ and $q(x)$ are integrable functions of the real variable x, shows that their general solutions may be expressed in exponential form. Conversely, the solutions of the first-order equation may be used to define the exponential function and the solutions of the second-order system may be used to define the circular and hyperbolic functions as well as to give the relations that exist between these two sets of functions. These facts lead one to consider the general system

$$
\begin{equation*}
y_{i}^{\prime}=\sum_{k=1}^{n} A_{k}(x) y_{i+m+h k}, \quad\left(i=1, \cdots, n ; y_{j+n} \equiv y_{j}\right) \tag{1}
\end{equation*}
$$

where n is a positive integer, m and h are integers or zero, and where the coefficients $A_{k}(x)$ are L-integrable functions of x on an interval of definition X. More generally, one is led to consider the functional system

$$
\begin{equation*}
L\left(y_{i}\right)=\sum_{k=1}^{n} A_{k} y_{i+m+h k}, \quad\left(i=1, \cdots, n ; y_{j+n} \equiv y_{j}\right) \tag{2}
\end{equation*}
$$

where the functional operator L has the property $L(a y+b z) \equiv$ $a L(y)+b L(z)$ for any constants a and b, and where the coefficients A_{k} are functions of a finite or countably infinite set of variables (x_{1}, x_{2}, \cdots) in a domain D of these variables. It is to be noted that the operator L may combine partial differential operators of various orders, simple and multiple integrals, and many other operators, so that system (1) occurs as a very special case of system (2). The present paper considers system (2). As a special case of the results of the paper, the general solution of system (1) is obtained and its exponential character exhibited.

[^0]Theorem 1. Let p and q be any positive integers* such that $p q=n$; then there exists a non-singular linear transformation carrying y_{1}, \cdots, y_{n} into $u_{i t}, i=1, \cdots, q, t=1, \cdots, p$, in such a way that system (2) goes into p independent systems each one of which consists of q equations involving q of the quantities $u_{i t}$ and no two of the systems have a $u_{i t}$ in common. \dagger

Proof. Let r_{1}, \cdots, r_{p} be the distinct p th roots of unity and let

$$
\begin{equation*}
u_{i t}=\sum_{j=1}^{p}\left(r_{t}\right)^{j} y_{i+(j-1) q},(i=1, \cdots, n, \cdots ; t=1, \cdots, p) \tag{3}
\end{equation*}
$$

Lemma. $u_{i t}=r_{t} u_{i+q, t}$, hence $u_{i+n, t}=u_{i+p q, t}=\left(r_{t}\right)^{p}, u_{i t}=u_{i t}$.
Proof of Lemma. From (3), we have

$$
\begin{aligned}
r_{t} u_{i+q, t} & =\sum_{j=1}^{p}\left(r_{t}\right)^{j+1} y_{i+j q}=\sum_{s=2}^{p}\left(r_{t}\right)^{s} y_{i+(s-1) q}+\left(r_{t}\right) y_{i} \\
& =\sum_{s=1}^{p}\left(r_{t}\right)^{s} y_{i+(s-1) q}=u_{i t} .
\end{aligned}
$$

Proof of Theorem 1. Apply L to $u_{i l}$ as given by (3) and make use of (2):

$$
\begin{aligned}
L\left(u_{i t}\right) & =L\left(\sum_{j=1}^{p}\left[r_{t}\right]^{j} y_{i+(j-1) q}\right)=\sum_{j=1}^{p}\left[r_{t}\right]^{j} L\left(y_{i+(j-1) q}\right) \\
& =\sum_{j=1}^{p}\left[r_{t}\right]^{j} \sum_{k=1}^{n} A_{k} y_{i+m+h k+(j-1) q}=\sum_{k=1}^{n} A_{k} u_{i+m+h k, t} \\
& =\sum_{k=1}^{q} \sum_{j=1}^{p} A_{k+(j-1) q} u_{i+m+h k+h(j-1) q, t} .
\end{aligned}
$$

If we now apply the lemma, we obtain
$\left(S_{t}\right) L\left(u_{i t}\right)=\sum_{k=1}^{q} B_{k t} u_{i+m+h k, t}, \quad\left(i=1,2, \cdots, q ; r_{t} u_{i+q, t}=u_{i t}\right)$,

[^1]where
$$
B_{k t}=\sum_{j=1}^{p}\left[r_{t}\right]^{h(1-j)} A_{k+(j-1) q}
$$

System (S_{t}) consists of q equations involving $u_{1 t}, \cdots, u_{q t}$. The systems $\left(S_{1}\right),\left(S_{2}\right), \cdots,\left(S_{p}\right)$ are the ones required for Theorem 1. It remains to prove that the transformation (3) is non-singular. When i is fixed, a determinant of coefficients of $y_{i}, y_{i+q}, \cdots, y_{i+(p-1) q}$ in (3) is

$$
D_{i}=\left|\begin{array}{cccc}
r_{1} & r_{1}{ }^{2} & \cdots & r_{1}^{p} \\
r_{2} & r_{2}{ }^{2} & \cdots & r_{2}^{p} \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right|=\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & \\
r_{2} & r_{2}{ }^{2} & \cdots & \left(r_{2}\right)^{p-1} & 1 \\
r_{p} & r_{p}{ }^{2} & \cdots & r_{p}{ }^{p}
\end{array}\right| .
$$

D_{i} is recognized as a Vandermonde determinant and has the value

$$
\prod_{\substack{k, j=1 \\ j>k}}^{p}\left(r_{j}-r_{k}\right)
$$

A determinant of the transformation (3) is therefore

$$
D=\prod_{1}^{q} D_{i}=\left(D_{i}\right)^{q} \neq 0
$$

The quantities $y_{i}, y_{i+q}, \cdots, y_{i+(p-1) q}$ may be thought of as the roots of an equation and, with this interpretation, the quantity $u_{i t}$ becomes a Lagrange resolvent.* Thus $u_{i t}=\left[r_{t}, Y_{i}\right]$, where r. is any p th root of unity and where the components of Y_{i} are $y_{i}, y_{i+q}, \cdots, y_{i+(p-1) q}$. This interpretation is quite helpful and enables one to solve equations (3) for y_{1}, \cdots, y_{n} with ease. By a well known property of the Lagrange resolvent, \dagger we have

$$
\sum_{t=1}^{p}\left(r_{t}\right)^{-k} u_{i t}=p y_{i+(k-1) q}, \quad(i=1, \cdots, q ; k=1, \cdots, p) .
$$

[^2]Hence

$$
\begin{align*}
& y_{i+(k-1) q}=\left[\sum_{t=1}^{p}\left(r_{t}\right)^{-k} u_{i t}\right] / p, \tag{4}\\
& \quad(i=1, \cdots, q ; k=1, \cdots, p) .
\end{align*}
$$

The special case of transformation (3) where $p=n$ and $q=1$ is important since it resolves system (2) into n equations, each of which contains a single function $u_{i t}$. For a wide class of operators L, it will then be possible to solve these n equations for the u 's and thus obtain y_{1}, \cdots, y_{n} by means of equations (4). Thus system (1) yields $u_{t}^{\prime}=B_{t} r_{t}^{-(m+h)} u_{t}$ (dropping the subscript 1$),(t=1, \cdots, n)$. Hence we obtain $u_{t}(x)=c_{t} e^{f(t, x)}$, where c_{1}, \cdots, c_{n} are arbitrary constants and

$$
\begin{equation*}
f(t, x)=\sum_{j=1}^{n}\left(r_{t}\right)^{-m-j h} \int_{a}^{x} A_{j}(s) d s \tag{5}
\end{equation*}
$$

The general solution of system (1) is

$$
\begin{equation*}
y_{k}(x)=\sum_{t=1}^{n}\left(r_{t}\right)^{-k} C_{t} e^{f(t, x)}, \quad(k=1, \cdots, n) \tag{6}
\end{equation*}
$$

where $f(t, x)$ is given by (5) and C_{1}, \cdots, C_{n} are arbitrary constants. Formulas (6) show the exponential character of the solutions of all systems of type (1) and these differential systems are seen to define a class of functions which have many properties in common with the exponential, sine, and cosine functions. These properties are more evident when the general solution of (5) is put in trigonometric form. We now obtain this form.

Let the notation be chosen so that

$$
r_{t}=\cos (2 t \pi / n)+i \sin (2 t \pi / n)
$$

We have $r_{t}=\left(r_{1}\right)^{t}$ and $f(t, x)$ has the form

$$
f(t, x)=\sum_{j=1}^{n} r_{1}^{-t(m+j h)} \int_{a}^{x} A_{j}(s) d s,
$$

while

$$
f(n-t, x)=\sum_{j=1}^{n} r_{1} t(m+j h) \int_{a}^{x} A_{j}(s) d s .
$$

Let

$$
\begin{align*}
& P(t, x)=\sum_{j=1}^{n} \int_{a}^{x} A_{j}(s) d s \cos (2 t \pi(m+j h) / n) \tag{7}\\
& Q(t, x)=-\sum_{j=1}^{n} \int_{a}^{x} A_{j}(s) d s \sin (2 t \pi(m+j h) / n)
\end{align*}
$$

then $f(t, x)=P(t, x)+i Q(t, x)$ and $f(n-t, x)=P(t, x)-i Q(t, x)$.
Odd-Order Case. Let $n=2 d+1$, where d is an integer. We have

$$
y_{k}(x)=\sum_{p=1}^{d}\left[C_{p} r_{1}^{-p k} e^{f(p, x)}+C_{n-p} r_{1}^{-(n-p) k} e^{f(n-p, x)}\right]+C_{n} e^{f(n, x)} .
$$

Upon expressing $f(p, x)$ and $f(n-p, x)$ in terms of P and Q and grouping the terms of $y_{k}(x)$, we obtain

$$
\text { (9) } \begin{gathered}
y_{k}(x)=C_{n} e^{f(n, x)}+\sum_{p=1}^{d} e^{P(p, x)}\left[C_{p} e^{Q i}+C_{n-p} e^{-Q i}\right] \cos (2 p k \pi / n) \\
+i\left[-C_{p} e^{Q i}+C_{n-p} e^{-Q i}\right] \sin (2 p k \pi / n)
\end{gathered}
$$

Let $y_{1 k}(x)$ denote the $y_{k}(x)$ obtained from (9) when $C_{p}=C_{n-p}$ $=H_{p} / 2$ and let $y_{2 k}$ be the y_{k} obtained when $C_{p}=-C_{n-p}=$ $K_{p} /(2 i)$. We note that $y_{k}=y_{1 k}(x)+y_{2 k}(x),(k=1, \cdots, n)$, is a solution of system (1). Furthermore, this is the general solution of that system. We have

$$
\text { (10) } \begin{aligned}
y_{k}(x)= & C_{n} e^{f(n, x)}+\sum_{p=1}^{d} e^{P(p, x)}\left\{H_{p} \cos [Q(p, x)-2 p k \pi / n]\right. \\
& \left.+K_{p} \sin [Q(p, x)-2 p k \pi / n]\right\}
\end{aligned}
$$

where $C_{n}, H_{p}, K_{p}, p=1, \cdots, d$, are arbitrary constants and $f(p, x), P(p, x), Q(p, x)$ are given by formulas (5), (7), and (8). If we let

$$
N_{p}=\left[H_{p}{ }^{2}+K_{p}{ }^{2}\right]^{1 / 2}, \quad H_{p} / N_{p}=\cos M_{p}, \quad-K_{p} / N_{p}=\sin M_{p},
$$

formulas (10) become
(11) $y_{k}(x)=C_{n} e^{f(n, x)}+\sum_{p=1}^{d} N_{p} e^{P(p, x)} \cos \left[Q(p, x)+M_{p}-2 p k \pi / n\right]$,
where $C_{n}, N_{p}, M_{p}, p=1, \cdots, d$, are arbitrary constants.

Even-Order Case. In the case $n=2 d, d$ an integer, formula (6) can be put in the form

$$
\begin{align*}
y_{k}(x)= & \sum_{p=1}^{d-1}\left[C_{p} r_{1}^{-p k} e^{f(p, x)}+C_{n-p} r_{1}^{p k} e^{f(n-p, x)}\right] \tag{12}\\
& +C_{n} e^{f(n, x)}+C_{d} e^{f(d, x)} r_{1}^{-k d}
\end{align*}
$$

Procedure entirely analogous to that used in treating the oddorder case leads to the following two forms of the general solution of system (1) in the case where n is an even integer:

$$
\begin{align*}
y_{k}(x)= & K e^{f(n, x)}+H e^{f(d, x)}[-1]^{k} \tag{13}\\
& +\sum_{p=1}^{d-1}\left[H_{p} \cos \{Q(p, x)-2 p k \pi / n\}\right. \\
& \left.+K_{p} \sin \{Q(p, x)-2 p k \pi / n\}\right] e^{P(p, x)} \\
y_{k}(x)= & K e^{f(n, x)}+H e^{f(d, x)}[-1]^{k} \\
& +\sum_{p=1}^{d-1} N_{p} e^{P(p, x)} \cos \left[Q(p, x)+M_{p}-2 p k \pi / n\right]
\end{align*}
$$

where $H, K, H_{p}, K_{p}, N_{p}, M_{p}, p=1, \cdots, d-1$, are arbitrary constants and $f(p, x), P(p, x), Q(p, x)$ are given by formulas (5), (7), and (8).

It would be of interest to investigate specific properties of the solutions given by (10), (11), (13), and (14), for example the distribution of the roots of the solution functions.*

The University of California at Los Angeles

[^3]
[^0]: * Presented to the Society, April 5, 1930.

[^1]: * One such pair being n and 1.
 \dagger We assume the existence of a set of functions y_{1}, \cdots, y_{n} such that (2) holds almost everywhere in D.

[^2]: * See Cajori, Theory of Equations, New York, Macmillan, 1904, pp. 129133.
 \dagger See Cajori, loc. cit., p. 130.

[^3]: * See L. E. Ward, American Mathematical Monthly, vol. 34 (1927), pp. 301-303, for a special third-order case.

