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A SET OF CYCLICLY RELATED FUNCTIONAL 
EQUATIONS* 

BY W. M. WHYBURN 

An examination of the first-order differential equation 
y'=p(x)y and the second-order system y' = p(x)y+q(x)z, 
z' =p(x)z+q(x)y, where p{x) and q(x) are integrable functions 
of the real variable x, shows that their general solutions may 
be expressed in exponential form. Conversely, the solutions of 
the first-order equation may be used to define the exponential 
function and the solutions of the second-order system may be 
used to define the circular and hyperbolic functions as well as 
to give the relations that exist between these two sets of func­
tions. These facts lead one to consider the general system 

n 

(1) y I = Z) Ak{x)yi+m+hk, (i = 1, • • • , n\ yi+n s yi), 
k=i 

where n is a positive integer, m and h are integers or zero, and 
where the coefficients Ak(x) are L-integrable functions of x 
on an interval of definition X. More generally, one is led to 
consider the functional system 

n 

(2) L(y{) = ^Akyi+m+hk, (i = 1, • • • , n\ yi+n = y,)> 

where the functional operator L has the property L(ay+bz) = 
aL(y)+bL(z) for any constants a and b, and where the coef­
ficients A k are functions of a finite or countably infinite set of 
variables (xi, #2, • • • ) in a domain D of these variables. I t 
is to be noted that the operator L may combine partial dif­
ferential operators of various orders, simple and multiple 
integrals, and many other operators, so that system (1) occurs 
as a very special case of system (2). The present paper consid­
ers system (2). As a special case of the results of the paper, 
the general solution of system (1) is obtained and its exponen­
tial character exhibited. 

* Presented to the Society, April 5,1930. 



864 W. M. WHYBURN [Dec, 

THEOREM 1. Let p and q be any positive integers* such that 
pq — n\ then there exists a non-singular linear transformation 
carrying yiy • • • ,yninto UiUi—\, - • -yq, t—1, • • ^p, in such a 
way that system (2) goes into p independent systems each one of 
which consists of q equations involving q of the quantities uu and 
no two of the systems have a uu in common.^ 

PROOF.. Let ri, • • • , rp be the distinct pth roots of unity and 
let 

V 

(3) uu = 22(^)^+0-1)9, (i = 1, • • • , ny • • • ; t = 1, • • • , p). 
3=1 

LEMMA. Uit=zrtUi+q,tJ hence ui+n)t = Ui+pq,t = (rt)p, uit = Uit. 

Proof of Lemma. From (3), we have 

V V 

rtUi+q>t= J2(rt)i+1yi+M = H(rt)syi+(s-i)q+ (rt)yi 
3=1 s = 2 

v 
= lL(rtyyi+(s-1)q = uit. 

s=l 

Proof of Theorem 1. Apply L to uit as given by (3) and make 
use of (2) : 

/ V \ P 

L(uit)==L[ E h ] ^ + ( M ) J = H[rt]3'L(yi+U-lh 
\ j= l / 3=1 

,) 

p n 

— z^tirt\J z-jAkyi+m+hk+a-Dq = 2-^4*^+™+^.* 
3=1 k=l fc=l 

q p 

~ L-i 2~iAk+(i-l)qUi+m+hk+h(]'-l)q,t* 
k=l 3=1 

If we now apply the lemma, we obtain 

(St) L(uit) = 2-dBktUi+m+hk,t, (i = 1, 2, • • • , q\ rtui+qtt = uit)f 

* One such pair being n and 1. 
t We assume the existence of a set of functions yit • • • , yn such that (2) 

holds almost everywhere in D. 
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where 

v 

Bht = E h ] A ( H ) i H ( f _ 1 ) 3 . 

System (St) consists of q equations involving uu, • • • , uqt. 
The systems (Si), (S2), • • • , (Sp) are the ones required for 
Theorem 1. I t remains to prove that the transformation (3) is 
non-singular. When i is fixed, a determinant of coefficients 
of y%, yi+q, • • • , yi+{p-Da in (3) is 

1 1 . • • 1 I I 

r» r? • • • (r2y-i 1 

rP rP
2 • • • (rp)»""1 1 I 

D{ is recognized as a Vandermonde determinant and has the 
value 

flirt-ft). 
k, y=i 

A determinant of the transformation (3) is therefore 

i 

The quantities yi} yi+q, • • • , y%+(P-i)q niay be thought of as 
the roots of an equation and, with this interpretation, the quan­
tity uit becomes a Lagrange resolvent.* Thus Uit=[rt}Yi], 
where r* is any pth root of unity and where the components of 
Yi are yif yi+q> • • • , yi+(p-i)q. This interpretation is quite 
helpful and enables one to solve equations (3) for yi, • • - , yn 

with ease. By a well known property of the Lagrange resolv­
ent, f we have 

p 

J2(rt)~kuit = pyi+vc-i)q, (i = 1, • • • , q; k = 1, • • • , p). 

* See Cajori, Theory of Equations, New York, Macmillan, 1904, pp. 129-
133. 

t See Cajori, loc. cit., p. 130. 

f\ 
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Hence 

(4) yi+(k-i)Q = Jl(rt)-kUit W p, 

(i = i, • • • , q\ k = l, • • • , p). 

The special case of transformation (3) where p = n and q = 1 
is important since it resolves system (2) into n equations, each 
of which contains a single function uit. For a wide class of opera­
tors L, it will then be possible to solve these n equations for the 
u's and thus obtain yi, • • • , yn by means of equations (4). 
Thus system (1) yields ut' = Btrr(m+h)ut (dropping the sub­
script 1), (t = 1, • • • ,n). Hence we obtain ut(x) =cte

f(t'x\ where 
Cij ' ' ' , cn are arbitrary constants and 

(5) f{t, x) = È ( r , ) - - > * f'Afàds. 

The general solution of system (1) is 

(6) yk(x) = ! > , ) - W < < - * \ (* = 1, • • • , *), 

where f(t,x) is given by (5) and G, • • • , Cn are arbitrary con­
stants. Formulas (6) show the exponential character of the 
solutions of all systems of type (1) and these differential sys­
tems are seen to define a class of functions which have many 
properties in common with the exponential, sine, and cosine 
functions. These properties are more evident when the general 
solution of (5) is put in trigonometric form. We now obtain 
this form. 

Let the notation be chosen so that 

rt = cos (2tw/n)+i sin (2tw/n). 

We have rt = (n) ' and f(t,x) has the form 

ƒ( ' ,*) = I > r * ( m + A ) f Afàds, 
?=1 J a 

while 

n s* x 

f(n - t, x) = J2riHm+J'h) I Aj(s)ds. 
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Let 

n /* x 

(7) P{t, x) = X) I 4,-(s)<fa cos (2/TTOZ + i*) /») , 

n /» a; 

(8) Ö(*, o;) = - J2 I ^ƒ(*)<& sin (2/TT(W + jh)/n), 

then f(t,x) = P(t,x) +iQ(t,x) and f (n — t,x) =P(t,x) —iQ(t,x). 
Odd-Order Case. Let n = 2d-\-ly where d is an integer. We 

have 

d 

Jk(x) = J2[Cpri~pkef(p'x) + Cn-Prr^n~p)ke^n~p'x)] + Cne
f(n>x). 

Upon expressing f(p,x) and f(n — p, x) in terms of P and Q 
and grouping the terms of yk(x), we obtain 

d 

(9) ^ O ) = C ^ " ^ + J2eP(p,x)[CpeQi + Cn-.pe~^] cos (2pkw/n) 

+ i [ - C > ^ + Cn-P<rQi] sin (2pk<ir/n). 

Let j 'u(x) denote the 3>&(:x;) obtained from (9) when Cp = Cn~p 

= Hp/2 and let 3/2/b be the jk obtained when Cp= — Cn-p = 
Kp/(2i). We note that yk=yik(x)+y2k(x), (& = 1, • • • , w), is a 
solution of system (1). Furthermore, this is the general solu­
tion of that system. We have 

d 

(10) yk(x) = Cne"n>*> + Y,ep(p'x){Hp cos [Q(p, x) - 2pkir/n] 
p - i 

+ 2CpSin fe(#, *) - 2pkw/n]}, 

where Cn, Hp, KP1 p = l, • • - , d, are arbitrary constants and 
f(p,x), P(p,x)} Q(p,x) are given by formulas (5), (7), and (8). 
If we let 

Np= [Hp*+Kp*]1'*, Hp/Np = cos Mp, -Kp/Np = sinMPl 

formulas (10) become 

d 

(ll)yk(x)=Cné«n'*)+ ^2^pePip'x) cos [Q(p, x) + Mp-2pkw/n]) 
P=I 

where Cn, Np, MPJ p — l} • • • , d> are arbitrary constants. 
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Even-Order Case. In the case n = 2d, d an integer, formula 
(6) can be put in the form 

d-l 

(12) yk(x) = J2[Cprrpkef(^x) + C^rfe'<"-*•*>] 

+ Cne"n'*> +Cde^d^rrkd. 

Procedure entirely analogous to that used in treating the odd-
order case leads to the following two forms of the general solu­
tion of system (1) in the case where n is an even integer: 

(13) yk(x) = Reft»^ + flV<*•*>[- l ] * 
d-l 

+ T,[Hp cos {Q(p, x) - 2pkr/n} 
P=I 

+ Kpsin {Q(p, x) - 2pkTr/n}]ep^>*\ 

(14) yk(x) = J5V<».*>+jff^«.»>[- 1]* 
d-l 

+ J^Npe
p^^ cos [Q(p, x) + Mp - 2pkw/n], 

where H, Ky Hp, Kp, Np, MPJ p = l, • - - t d — 1, are arbitrary 
constants and f(p,x), P(p,x), Q(p,x) are given by formulas 
(5), (7), and (8). 

I t would be of interest to investigate specific properties of 
the solutions given by (10), (11), (13), and (14), for example the 
distribution of the roots of the solution functions.* 

THE UNIVERSITY OF CALIFORNIA AT LOS ANGELES 

* See L. E. Ward, American Mathematical Monthly, vol. 34 (1927), pp. 
301-303, for a special third-order case. 


