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ON T H E EXTENSION OF T H E GAUSS MEAN-VALUE 
T H E O R E M TO CIRCLES IN T H E NEIGHBORHOOD 

OF ISOLATED SINGULAR POINTS OF 
HARMONIC FUNCTIONS 

BY G. E. RAYNOR 

1. Introduction. Let ƒ(#, y) be a function harmonic in a plane 
region R except at an isolated singular point P in R, and let d 
be a circle in R with radius n and with P as center. In previous 
papers* the writer has shown that in this neighborhood f(x, y) 
can be put in the form 

1 
(1) ƒ(*, y) = clog h $ 0 , y) + V(x, y), 

r 
where f 

l r df 
c = — I —as, 

2w Jcxdn 
r being the distance from (x, y) to P , <£(#, 30» unless it be 
identically zero, harmonic in the neighborhood of P and such 
that there exist modes of approach to P for which the sum 
c log (1/r) +<& tends toward plus infinity and also toward minus 
infinity; and V is harmonic everywhere in the neighborhood of 
P including P. Also on G, 3> = 0. I t is to be noticed that the 
constant c may be zero so that $ has the same properties 
ascribed to the sum c log ( l / r ) + $ . 

If a system of polar coordinates (r, 0) be chosen with P as 
pole, $ may be expanded, for r ^ r i , in the formî 

* G. E. Raynor, Isolated singular points of harmonic functions, this Bulletin, 
vol. 32 (1926), p. 543, and Integro-differential equations of the Bâcher type, this 
Bulletin, vol. 32, p. 654. 

t Here, as in all tha t follows, the normal derivatives are to be taken in the 
direction of the inner normal. 

% G. E. Raynor, Note on the expansion of harmonic functions in the neigh
borhood of isolated singular points. Annals of Mathematics, vol. 31 (1930), 
p. 40. We shall refer to this as paper (A). 
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(2) $ = J£ — ( — ) - ( — ) (7m cos mS + Ôm sin m 6) 
m-i mL\r / V i / J 

where 

ri f* d$n f! rT d$n 

(3) 7m = — I cos mddd; ôm ~ — I sin tnddd. 
2ir J-v dn 2w J-.*- dn 

Also the two series 

/ r \ A 1 / r\m 

(4) G[ — 9 6 ) = — 2Lt —I — ) (7m cos md + 8m sin me) 
V l / m-1 W V l / 

and 

/ r i \ A 1 / r i \ w 

(5) G( — ; 0) = 2-. — I — ) (7m cos md + 5m sin md) 

are convergent for all values of 6 and of r^n . ,* and $ can be 
expressed in the form 

(6) $ ==(?(— ; $\ + G(—, e\ 

Furthermore 

/ r \ n r * d$ri r r r2~\ 
G[ — > e) = — - log 1 - 2—cos (a - 0) + — Wa, 

which gives a solution of the Neumann problem for the circle 
C\ with boundary values of the normal derivative equal to one-
half the value of the normal derivative of <ï> on G.f The func
tion <ï> also possesses the property 

(7) f « j = 0, 
J c 

where C is any circle concentric with G and of radius rSrL. 
In view of this last property it becomes of interest to inquire 
as to the value of 

* Paper (A), p . 40. Note tha t the definition of G{r/rx} of (21) of paper (A) 
has been slightly changed by inserting a minus sign in the right side of (4). 

f Paper (A), p. 41 ; and Goursat, Cours d'Analyse Mathématique, vol. 3, 
3d éd., p. 240. 
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ƒ. $>ds 
c2 

if C2 lies within G but does not have its center at P . Of course, 
if Q be the center of G and P lies without G we have by the 
Gauss mean-value theorem* 

I Ms = $(<2), 
2TT2JC2 

where r2 is the radius of C2. Our purpose then, in this note, is 
to find the value of 

| &ds, 

in the case of P within C2. In §3 we shall also examine the 
mean value of f(x, y) over G. 

2. The Mean Value of <ï>. Let a be the distance of Q from P 
and choose the line PQ as polar axis. Then by (2) 

(8) *(M)= E-H(-) - (-) k» 
m-l »L\fl/ \ fl/ J 

and hence by (4) 

(9) G(-, e) = - E - ( - ) 7m. 
V i / m-i m\ri/ 

By Green's formula, we have for the region bounded by the 
circles G and G, 

J' / d log r d<£>\ 
( $ log r ) ds 

d \ dn dn / 
(10) 

r / dlogr d$\ 

+ I ( * lo8 r )ds = °> 
dn dn / where r is the distance from a variable point (x, y) on G or G 

to the center Q of C, and the normal derivatives are taken 

* For a statement of the Gauss mean value theorem see Goursat, loc. cit., 
p. 181. 
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toward the interior of our region. Now on G, $ = 0 and on C2, 
d log r/dn = 1/V2. Furthermore 

I ds = 0.* 

Hence, since log r is constant on G, relation (10) above re
duces to 

(11) 

or 

(12) 

Now from (1) 

— f 
we have 

$ds = 

$ds = 

= f log Jc1 

f ds, 
dn 

r1 r* d$ r i 
= — log r dB 

2ir J„TT dn 

(13) ^ = _ + _ ^ + _L. 

Since ƒ is harmonic on C\ the left side of (13) has a derivative 
with respect to 6. Now V may be written as a Poisson integral 
and this integral may be expressed as the sum of a constant 
and the potential of a double layer. Since the values of V on G 
are the values of ƒ on G diminished by the constant c log (1/Vi) 
the density of this double layer is analytic on G and hence V 
is analytic in the closed region bounded by G and therefore the 
third term on the right of (13) has a derivative with respect 
to 0.f Since the same is true, obviously, of the first term it 
follows that the second term d$r/dn is also differentiable with 
respect to d and hence is of bounded variation. d$n/dn thus 
satisfies the conditions for expansion in a Fourier series and 
furthermore this series will be uniformly convergent in the 
closed interval —TT to ir. We thus have 

d$ri 2 * 
(14) = — z^/(ym cos nid + dm sin me), 

dn fi m==i 

where ym and 5m are as given in (3). The constant term in 
the expansion of d$rJdn is zero since as stated previously 

* See the second paper of the first footnote. 
t Encyklopâdie der Mathematischen Wissenschaften, vol. 2, 3, 1, p. 206. 
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'Ci dn L n-ds = 0. 

It may be pointed out that (14) may be obtained by differ
entiating (2) in the direction of the inner normal and then allow
ing r to approach Y\. 

Since log r is bounded on G it follows from (14) that the 
series 

d$ri 2 " 
(15) log r = — Z^(ym log r cos rnO + 8n log r sin md) 

an n m=i 
is uniformly convergent on C\. Hence the series may be in
tegrated termwise and we have 

ri rT d<$>n l A r CT 

(16) — I log r dB = — 2-j \ym I log r cos mddd 
2w J_ x dn ir m==i L J-* 

+ 8m I log r sin mddd . 

But 
2̂ -_ f]2 _ 2rxa cos 6 + #2, 

and hence 

1 / a a2\ 
(17) log r = log ri H log ( 1 - 2— cos (9 H ). 

2 \ ri r i / 

Now* 

ƒ / a a2\ 2TT/ a\m 

log ( 1 - 2— cos 6> H ) cos mddd = ( — J . 

Also 

log ( 1 - 2— cos 6 H ) sin m0<*0 = 0. 
\ fi Ti2/ 

Hence by (17), (18), and (19), equation (16), since log t\ is 
a constant, takes the form 

* Edwards, The Integral Calculus, vol. 2, p. 306, formula (10). The inte
grand in equation (18) above takes the same value in the interval — w to 0 as 
in the interval 0 to x and hence Edwards ' result must be multiplied by 2. 
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v fi r d$ri " 1 / a\m (a \ 
(20) - logr—±dd = - £ —( — ) ym = G( —, 0) . 

27T«/_r 0^ m - l W \ r i / V i / 

Thus equation (12) combined with (20) gives 

I $<fo = G ( —> 0J; 
2irr2Jc2 \fi / 

and we can state the following theorem. 

THEOREM 1. The mean value of the f unction <£ of equation (1) 
over a circle C2 within G having the singular point P in its in
terior is equal to the value of the f unction G{ (r/ri), 0} at Q, where 
Q is the center of C2. 

Since G {(r/ri), 0} is harmonic everywhere within C2 its 
value at Q by Gauss's theorem is its mean value over C2 and 
hence Theorem 1 can be stated in the form : 

THEOREM 2. The mean value of the f unction $ over a circle C% 
within G, having the singular point P in its interior is equal to 
the mean value of the f unction G{(/yVi), 0} over C2. 

Since 

*(r,0) =G(— , e\ + G(—, e\ 

it follows from Theorem 2 that we have the result : 

THEOREM 3. The mean value of the f unction G{ (n/r), 0} over 
a circle C2 within G, having P in its interior, is zero. 

I t is to be noticed that the above theorems are true if the 
center Q of C coincides with P . 

3. The Mean Value of f(x, y). If we wish to find the mean 
value of f(x, y) over C2 we must add to the mean value of 4> the 
mean values over C2 of the first and third terms of equation (1). 
Now the first term c log (1/r) is readily seen from (17) to be 
equivalent to 

c / a a2\ 
(21) - c log n log ( 1 - 2— cos 6 H ). 

2 \ n ri2/ 



i93°-J GAUSS MEAN-VALUE THEOREM 893 

But we have* 

ƒ / a a2\ 
log( 1 - 2—cos0 H )dd = 0. 

\ n f i 2 / 

Thus the mean value of the first term of (1) over C2 is 
— c log ri. Now the third term F(#, y) is harmonic in C2 and as 
stated previously is equal to 

U(x, y) + c i logr i , 

where U(x, y) takes the same values on Ci as f(x, y). Hence 
the mean value of V(x, y) over C2 is equal to 

U(Q) + <alogn. 

We thus find the mean value of the sum of the first and third 
terms of (1) to be U(Q). Combining this result with the theorem 
of the previous section we have the theorem: 

THEOREM 4. The mean value of the function ƒ of equation (1) 
over Ci is equal to U(Q) plus the value of the function 

G[ — , 0) = — I - log 1 - 2 — c o s ( a - 0) +— Ida 
\ri / iirJ-ir dn L f\ ^i2J 

at Q, where U is the function which solves the Dirichlet problem^ 
for C\ with boundary values ƒ, and G {(r/Vi), 0} is a solution of 
the Neumann problem for & with boundary values of the normal 
derivatives equal to one-half the normal derivatives of $ on G. 

It is to be noticed that if P is not a singular point, the above 
theorem reduces to the Gauss mean-value theorem. 

T H E UNIVERSITY OF OKLAHOMA 

* Edwards, loc. cit., p. 306, formula (9). The integrand in (22) above 
takes the same values in the interval — ir to 0 as in the interval 0 to x and 
hence Edwards ' result gives zero for (22). 

t For a statement of the Dirichlet problem see Goursat, loc. cit., p. 196. 


