NOTE ON THE NUMBER OF LINEARLY INDEPENDENT DIRICHLET SERIES THAT SATISFY CERTAIN FUNCTIONAL EQUATIONS*

BY J. I. HUTCHINSON
In a paper published in the Transactions of this Society, \dagger I have determined for each positive integer a the conditions on the coefficients of certain linear combinations of the Dirichlet series

$$
\sum_{\nu=0}^{\infty}\left(a_{\nu}+b\right)^{-s}, \quad(b=1, \cdots, a-1),
$$

in order that the function $f(s)$ thus determined shall satisfy one or another of the four functional equations
(I) and (II): $\quad f(s)= \pm(a)^{1 / 2}\left(\frac{2 \pi}{a}\right)^{s} \sin \frac{\pi s}{2} \frac{\Gamma(1-s)}{\pi} f(1-s)$,
(III) and (IV): $f(s)= \pm(a)^{1 / 2}\left(\frac{2 \pi}{a}\right)^{\rho} \cos \frac{\pi s}{2} \frac{\Gamma(1-s)}{\pi} f(1-s)$.

Three cases had to be considered ; $1: a \equiv 2(\bmod 4)$, which was completely solved ; 2 : $a=4 q ; 3: a=2 m+1$. These two cases were carried so far as to determine the roots of the characteristic equations $D(k)=0$ and the probable multiplicities of these roots. As the multiplicity of each root determines the number of linearly independent functions $f(s)$ that satisfy a given one of the equations (I), \cdots, (IV), it is evidently important to give a precise solution of the problem.

This seems all the more desirable, since the problem was first solved for the case a a prime number, by E . Cahen in $1894, \ddagger$ and needs only to be completed in the one respect indicated to have a complete and rigorous solution for every positive integer value of a.

[^0]The solution is very simple and consists in observing that the sum of the roots of $D(k)=0$ [T, pp.333-339] is, in every case, $\sum c_{\nu}^{2}$ for the (A) equations [T, p. 332] and $\sum s_{\nu}^{2}$ for the (B) equations [T, p. 336],

$$
c_{\mu}=\cos \frac{2 \pi \mu}{a}, \quad s_{\mu}=\sin \frac{(2 \pi \mu}{a}
$$

These may be evaluated by Gauss' sums.
To illustrate: In case $2, a=4 q$, we have*

$$
\sum_{\nu=1}^{2 q-1} c_{\nu}{ }^{2}=\frac{\sqrt{ } a}{2}-1
$$

The roots of $D(k)$ are [T, p. 338] $0,-1$, both simple, and $\sqrt{ } a / 2,-\sqrt{ } a / 2$ of multiplicities which we will denote by p and n respectively. Then,

$$
\text { sum of roots of } \begin{aligned}
D(k) & =0-1+\frac{1}{2}(a)^{1 / 2}(p-n) \\
& =\frac{\sqrt{ } a}{2}-1 .
\end{aligned}
$$

Moreover, since the degree of $D(k)$ is $2 q-1$, we have

$$
p+n+2=2 q-1
$$

The solution of these two equations gives

$$
p=q-1, n=q-2
$$

which agree with the conjectured values [$T, \mathrm{p} .328$].
All the other cases may be treated in a similar manner and verify the results previously indicated without proof.

Cornell University

[^1]
[^0]: * Presented to the Society, September 9, 1930.
 \dagger Properties of functions represented by the Dirichlet series $\sum(a \nu+b)^{-4}$, or by linear combinations of such series, vol. 31 (1929), pp. 322-344. I shall refer to this paper briefly by T.
 \ddagger Annales de l'École Normale, (3), vol. 11; in particular, pp. 13?-154.

[^1]: * See, for example, E. Landau, Vorlesungen uiber Zahlentheorie, vol. I, p. 153.

