ON A FUNCTION CONNECTED WITH A CUBIC FIELD*

BY LEONARD CARLITZ \dagger

By examining the functional equation of the zeta function and similar functions of an algebraic field, Hecke \ddagger has indicated a mode of constructing three types of modular forms. The first two types, associated with the rational Dirichlet L-functions and the Dedekind zeta function in an imaginary quadratic field, respectively, were already known. The third type, associated with a real quadratic field, was new.

Following Hecke, we construct in this note a certain function associated with a cubic field of negative discriminant. Let K denote such a field, and let $\zeta_{K}(s)$ be the zeta function in this field. Then as Artin§ has shown, $\zeta_{K}(s) / \zeta(s)$, the quotient of this function by the Riemann zeta, is an entire function of s. Indeed

$$
\begin{equation*}
\zeta_{K}=\zeta\left(L_{1} L_{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where L_{1} and L_{2} are L-functions in the imaginary quadratic field generated by the square root of d, the discriminant of K.

If we define $G(n)$ by

$$
\frac{\zeta_{K}}{\zeta}(s)=\sum_{n=1}^{\infty} \frac{G(n)}{n^{s}}, \quad \sigma=R(s)>1
$$

then the function we shall consider may be exhibited as

$$
\begin{gathered}
M(y)=\sum_{1}^{\infty} G(n) e^{2 n \pi y i / \Delta} \\
I(y)>0, \Delta=|d|^{1 / 2}>0
\end{gathered}
$$

Using a well known formula of Mellin, \|

[^0]$$
e^{2 n \pi y i / \Delta}=\frac{1}{2 \pi i} \int_{3 / 2-\infty i}^{3 / 2+\infty i}\left(\frac{-2 n \pi y i}{\Delta}\right)^{-s} \Gamma(s) d s
$$

(2) $\quad\left\{\begin{aligned} M(y) & =\frac{1}{2 \pi i} \sum_{1}^{\infty} \int\left(\frac{-2 \pi y i}{\Delta}\right)^{-s} \Gamma(s) \frac{G(n)}{n^{s}} d s \\ & =\frac{1}{2 \pi i} \int\left(\frac{-2 \pi y i}{\Delta}\right)^{-s} \Gamma(s) \frac{\zeta_{K}}{\zeta}(s) d s,\end{aligned}\right.$
the interchange of integration and summation is easily justified. We now consider the integral of

$$
\left(\frac{-2 \pi y i}{\Delta}\right)^{-s} \Gamma(s) \frac{\zeta_{K}}{\zeta}(s)
$$

taken in the positive direction around the rectangle of vertices

$$
\frac{3}{2} \pm A i,-\frac{1}{2} \pm A i, A>0
$$

Since ζ_{K} / ζ is integral and since ζ_{K} has a zero* at $s=0$, the integrand is regular within and on the boundary of the rectangle. Furthermore, using (1) and \dagger

$$
\begin{aligned}
L_{i}(s) & =O\left(t^{2}\right), \quad(i=1,2) \\
s & =\sigma+i t, \quad \sigma \geqq-\frac{1}{2} \\
\frac{\zeta_{K}}{\zeta}(s) & =O\left(t^{2}\right) \text { for } \sigma \geqq-\frac{1}{2}
\end{aligned}
$$

we see that the integrals along the vertical boundaries will converge and those along the horizontal boundaries will approach zero when A becomes infinite. \ddagger Therefore

[^1]\[

$$
\begin{aligned}
& \int_{3 / 2-\infty i}^{3 / 2+\infty i}\left(\frac{-2 \pi y i}{\Delta}\right)^{-s} \Gamma(s) \frac{\zeta_{K}}{\zeta}(s) d s \\
= & \int_{-1 / 2-\infty i}^{-1 / 2+\infty i}\left(\frac{-2 \pi y i}{\Delta}\right)^{-s} \Gamma(s) \frac{\zeta_{K}}{\zeta}(s) d s
\end{aligned}
$$
\]

$$
\begin{equation*}
=\int_{3 / 2-\infty i}^{3 / 2+\infty i}\left(\frac{-2 \pi y i}{\Delta}\right)^{s-1} \Gamma(1-s) \frac{\zeta_{K}}{\zeta}(1-s) d s \tag{3}
\end{equation*}
$$

Now

$$
\zeta_{K}(1-s)=\left(\frac{\Delta}{2 \pi^{3 / 2}}\right)^{2 s-1} \frac{\Gamma\left(\frac{s}{2}\right) \Gamma(s)}{\Gamma\left(\frac{1-s}{2}\right) \Gamma(1-s)} \zeta_{K}(s),
$$

and

$$
\zeta(1-s)=\pi^{-(2 s-1) / 2} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)} \zeta(s)
$$

so that

$$
\frac{\zeta_{K}}{\zeta}(1-s)=\left(\frac{\Delta}{2 \pi}\right)^{2 s-1} \frac{\Gamma(s)}{\Gamma(1-s)} \frac{\zeta_{K}}{\zeta}(s)
$$

Substituting in (3), we find that

$$
\begin{aligned}
M(y) & =\frac{1}{2 \pi i} \int_{3 / 2-\infty i}^{3 / 2+\infty i}\left(\frac{-2 \pi y i}{\Delta}\right)^{s-1}\left(\frac{\Delta}{2 \pi}\right)^{2 s-1} \Gamma(s) \frac{\zeta_{K}}{\zeta}(s) d s \\
& =\frac{1}{-y i} \frac{1}{2 \pi i} \int_{3 / 2-\infty i}^{3 / 2+\infty i}\left(\frac{2 \pi i}{y \Delta}\right)^{-s} \Gamma(s) \frac{\zeta_{K}}{\zeta}(s) d s .
\end{aligned}
$$

Comparing this with (2), we see at once that

$$
M(y)=-\frac{1}{y i} M\left(-\frac{1}{y}\right),
$$

which is the property of $M(y)$ sought.
California Institute of Technology

[^0]: * Presented to the Society, November 29, 1930.
 \dagger National Research Fellow in Mathematics.
 \ddagger Zur Theorie der elliptischen Modulfunktionen, Mathematische Annalen, vol. 97 (1926), pp. 210-242.
 § Über die Zetafunktionen gewisser algebräischen Zahlkörper, Mathematische Annalen, vol. 89 (1923), pp. 147-156.
 $\|$ Mellin, Abriss einer einheitlichen Theorie der Gamma- und hypergeometrischen Funktionen, Mathematische Annalen, vol. 68 (1910), pp. 305-337.

[^1]: * Landau, Einfuhrung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, 1918, Satz 155.
 \dagger Landau, Ueber Ideale und Primideale in Idealklassen, Mathematische Zeitschrift, vol. 2 (1918), p. 106.
 \ddagger See Landau, Vorlesungen über Zahlentheorie, vol. 1, 1927, p. 215.

