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PENOSCULATING CONICS OF A PLANE CURVE* 

BY J. W. LASLEY, JR. 

1. The Penosculating Parabolas. There is a one-parameter 
family of parabolas on three non-collinear points of a plane 
curve. If two of these three points approach a third point at 
which the tangent to the given curve is well-defined and the 
curvature is definitely non-vanishing, there is determined a one-
parameter family of penosculating parabolas at the point. Abel 
Transonf found that the directrices of these parabolas all pass 
through a point on the normal to the curve at the given point 
P on the convex side of the curve whose distance from P is equal 
to one-half the radius of curvature. He found that the locus of 
the foci of these parabolas is a circle whose diameter is that half 
of the radius of curvature that terminates at P . Transon ob­
tained a construction for one of the parabolas, the osculating 
parabola. We shall now generalize this construction so as to 
make it applicable to any parabola of the family. 

For this purpose we shall associate with each parabola of the 
pencil a line on P , parallel to the axis of the parabola. We'shall 
call this line the axis parallel, and the pencil of lines to which 
it belongs the axis pencil. To each line of the axis pencil there 
corresponds a unique parabola of the pencil of penosculating 
parabolas except in the case of the tangent to the given curve. 
We shall make correspond to this tangent the degenerate parab­
ola consisting of that tangent counted twice. In this way we 
have set up a one-to-one correspondence between the parabolas 
of the pencil and the axis parallels. In this correspondence there 
corresponds to the normal as an axis parallel a parabola whose 
axis is that normal, whose tangent at its vertex is the tangent 
to the given curve, and whose focus is the center of the circular 
locus of the orthogonal projections of the center of curvature on 
the axis parallels. 

To construct a parabola of the pencil of penosculating parab­
olas we proceed as follows. Project orthogonally the center of 
curvature C of the given curve at P upon the axis parallel a cor-

* Presented to the Society, February 28, 1931. 
t Journal de Mathématiques, vol. 6 (1841), p. 191. 
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responding to this parabola, obtaining the point D. Project or­
thogonally D upon the normal at P into a point E. The line on 
E parallel to a is the axis of the required parabola. The focus of 
the parabola will lie on a line s through the point P which makes 
with the normal an angle equal to that made by the axis parallel 
a, but on the opposite side. This line 5 we shall call the sym­
metric line for the axis parallel. The focus is then the point of 
intersection F of the axis of the parabola and the symmetric 
line. Let A be the point on the normal at P on the convex side 
of the curve whose distance from P is equal to one-half the 
radius of curvature. The directrix of the parabola is the line on 
A perpendicular to the axis of the parabola. The focus and 
directrix of the penosculating parabola having been located, its 
construction may now be regarded as complete. Of course, the 
locus of intersections of the axis parallels and corresponding di­
rectrices is a circle tangent to the given curve at P . This circle 
has a diameter equal to one-half the radius of curvature, and is 
consequently the reflexion in the tangent of the circular locus 
of foci of penosculating parabolas. If in the foregoing construc­
tion for any penosculating parabola the axis parallel is taken to 
be the axis of aberrancy of Transon, we obtain the osculating 
parabola. That the construction can be generalized by having 
the axis parallel play the role of the axis of aberrancy seems not 
to have been noticed. 

2. The Penosculating Equilateral Hyperbolas. There is also at 
P a one-parameter family of penosculating equilateral hyperbo­
las obtained from the pencil of equilateral hyperbolas on three 
non-collinear points of a given curve by letting two of the three 
points approach the third. These hyperbolas seem to have re­
ceived practically no attention. Cesàro* obtained for one of 
them, the osculating equilateral hyperbola, a canonical form for 
its equation referred to a local reference frame. We shall extend 
the correspondence outlined above so as to include these hyper­
bolas and give a construction available for any penosculating 
equilateral hyperbola of the pencil. 

The locus of the centers of these hyperbolas is a circle on the 
convex side of the given curve with diameter equal to the radius 
of curvature. This circle touches the given curve at P and has, 

* Lezioni di Geometria Intrinseca, Naples, 1896, p. 59. 



78 J. W. LASLEY, JR. [Feb., 

then, the same normal there. It is the reflexion in the tangent 
of the circular locus of projections of the center of curvature on 
the axis parallels. Moreover, the center of this circle is the ver­
tex of the pencil of directrices of penosculating parabolas men­
tioned by Transon. We shall make use of this circle to extend 
our correspondence to include the hyperbolas. For this purpose 
we make correspond to each axis parallel that hyperbola whose 
center is the further intersection of the axis parallel with the 
circular locus of centers of penosculating equilateral hyperbolas. 
To each hyperbola there is a unique axis parallel, namely that 
determined by the center of the hyperbola and P . In this corre­
spondence we shall assign to the tangent as an axis parallel the 
degenerate hyperbola consisting of the tangent and the normal 
to the given curve at P . To the normal there will correspond a 
hyperbola whose transverse axis is the normal and whose conju­
gate axis is parallel to the tangent and distant from it on the 
convex side of the curve an amount equal to the radius of curva­
ture. For this hyperbola we have a very simple construction for 
obtaining its asymptotes and axes. With P as a center and with 
the radius of curvature as radius describe a circle. This circle 
meets the tangent in points which joined to P give the asymp­
totes of the hyperbola; it meets the normal in points which 
joined to P give the axes of the hyperbola. Of course, the above 
refers only to the hyperbola corresponding to the normal, but 
it will be seen below that it is a special case of a more general 
construction available for all penosculating equilateral hyper­
bolas. 

To construct any hyperbola of the pencil we proceed as fol­
lows. With P as a center and with a radius equal to the projec­
tion of the radius of curvature on the corresponding axis parallel 
describe a circle. This circle passes through the center of the re­
quired hyperbola as picked out by the further intersection of the 
axis parallel with the locus of centers. This circle meets the 
tangent to the given curve at P in points which joined to the 
center give the asymptotes ; it meets the normal in points which 
joined to the center give the axes. Since we know that the re­
quired hyperbola goes through P , and now have a construction 
for its asymptotes, we may consider the construction for any 
penosculating equilateral hyperbola complete. I t is interesting 
to note that for every hyperbola of the pencil it is so that the 
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projection of the radius of curvature of the given curve upon the 
axis parallel is a mean proportional between the intercepts of 
the tangent of the hyperbola on the tangent. If, in particular, 
in the foregoing construction, the chosen axis parallel is the axis 
of aberrancy of Transon, the hyperbola obtained is the osculat­
ing equilateral hyperbola of Cesàro. Our correspondence, then, 
makes correspond the osculating parabola, the axis of aberrancy 
and the osculating equilateral hyperbola. 

3. Transon's Parabola. There is at an ordinary point of a 
curve a one-parameter family of penosculating conies obtained 
from the pencil of conies on four points by letting three of the 
points approach the fourth. Wilczynski* has pointed out that 
among these conies there will ordinarily be one, and only one, 
parabola, the osculating parabola. There will also be one, and 
only one, equilateral hyperbola, the osculating equilateral hy­
perbola. Wilczynski notes, too, that there will be one, and just 
one, conic for which the order of contact at the point will rise to 
four. This conic he calls the osculating conic. Transon found 
that the locus of centers of penosculating conies is the axis of 
aberrancy. He found also that the axes of these penosculating 
conies envelop a parabola, which we shall call, with Wilczynski, 
Transon's parabola. Due to Transon also is the fact that the 
focus of this parabola is the orthogonal projection G of the cen­
ter of curvature of the given curve upon the line joining P to the 
focus of the osculating parabola, that is, upon the line we have 
called the symmetric line for the axis of aberrancy. In the termi­
nology we are employing here this focus appears also as the 
point of intersection of the symmetric line for the axis of aber­
rancy and the circular locus of feet of perpendiculars let fall 
from the center of curvature on the axis parallels. I t is, too, the 
reflexion in the normal of the orthogonal projection of the center 
of curvature upon the axis of aberrancy. Transon found that 
the directrix of this parabola is the axis of aberrancy. Conse­
quently the axis of the parabola is the line on G perpendicular 
to the axis of aberrancy. I t is of interest, though not noted by 
Transon, that the focus of the osculating parabola lies on the 
symmetric line for the axis of'aberrancy half way between the 
given point P and the focus of Transon's parabola. The tangent 

* This Bulletin, vol. 22, p. 317. 
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to Transon's parabola at the vertex always coincides with the 
axis of the osculating parabola. The tangent at the vertex of 
the osculating parabola is always parallel to the axis of Tran­
soms parabola, but coincides with it if, and only if, the given 
curve is a logarithmic spiral whose tangents cut the radii vec-
tores at an angle whose cotangent is ± 3 \ / 2 . The directrix of 
the osculating parabola coincides with the axis of Transon's pa­
rabola if, and only if, the given curve is a logarithmic spiral with 
an angle whose cotangent is ±3\/3. The symmetric line for 
the axis of aberrancy is usually quite different from the axis of 
Transon's parabola. I t coincides with it if, and only if, the given 
curve is a logarithmic spiral whose angle has ± 3 for its cotan­
gent. In this event the aberrancy of the given curve is unity at 
the point, the vertex of Transon's parabola coincides with the 
focus of the osculating parabola and Transon's parabola touches 
the tangent and the normal of the given curve at the ends of the 
latus rectum. Wilczynski noted that the tangent and the normal 
of the given curve always touch Transon's parabola. It may be 
added that the normal always touches it at the center of curva­
ture, and that a line joining the center of curvature to the focus 
of the osculating parabola always meets the tangent to the given 
curve in a point T at which Transon's parabola touches that 
tangent. The reflexion J of the center of curvature C in the 
tangent when joined to T gives that diameter of Transon's pa­
rabola which bisects all chords parallel to the tangent. 

4. Construction f or a Penosculating Conic. By means of Tran­
soms parabola we can now obtain a construction for any pen­
osculating conic. Wilczynski noted for the osculating conic a 
property true for all penosculating conies, namely, that the tan­
gents to Transon's parabola from a point on the axis of aber­
rancy are the axes of the conic which has that point as center. 
I t turns out that one of these axes always touches Transon's 
parabola between the points at which that parabola touches the 
tangent and the normal to the given curve. This axis is the axis 
on which lie the foci of the conic. If now a circle be described 
upon that segment of the other axis included between its inter­
sections with the tangent and the normal of the given curve, this 
circle will meet the first named axis in the foci of the desired 
penosculating conic. Since this conic is known to pass through 
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the point P on the given curve, we now know the foci and one 
point, and the conic can readily be drawn. With the exception 
of the osculating parabola, this construction applies to any mem­
ber of the pencil of penosculating conies. Since a construction 
for the osculating parabola has been outlined above, we may re­
gard the problem of constructing penosculating conies as com­
pletely solved. 

5. The Ellipse of Minimum Eccentricity. Wilczynski showed 
that among the conies just considered there is an ellipse of mini­
mum eccentricity. We can now obtain the following construc­
tion for this ellipse. Let us project orthogonally the center of 
curvature of the given curve upon the axis of aberrancy. This 
projection is the center of the ellipse of minimum eccentricity. 
With the position of the center known we can construct the 
ellipse by means of the construction just outlined for penoscu­
lating conies in general. It is interesting to note that a circle 
with center at P and with radius equal to the semi-diameter of 
this ellipse which terminates at P meets the axis of aberrancy 
again in the center of the osculating equilateral hyperbola, and 
meets the symmetric line for the axis of aberrancy on the con­
cave side of the given curve in the focus of Transon's parabola. 
Penosculating ellipses of equal eccentricity occur in pairs. Wil­
czynski found that the centers Oi and Oi of any two of these 
ellipses of equal eccentricity are so situated on the axis of aber­
rancy that if 0 denotes the center of the ellipse of minimum 
eccentricity, PO is the geometric mean between P0\ and PO2. 
That is, the centers of the ellipses of equal eccentricity form an 
involution whose center is the center of the ellipse of minimum 
eccentricity. Although for a given suitable value for the eccen­
tricity there are two ellipses that have that eccentricity, this is 
not true of the penosculating hyperbolas, if we confine our atten­
tion to the eccentricities corresponding to the real foci and real 
directrices. Although an ellipse has only one real eccentricity, 
the hyperbola ordinarily has two. For a given suitable value for 
the eccentricity of an hyperbola there are two penosculating 
hyperbolas, one with this eccentricity for its real foci and real 
directrices, the other with this eccentricity for its imaginary foci 
and imaginary directrices. If now we associate in pairs those 
hyperbolas which have equal eccentricities, we can extend the 
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above involution to the entire family of penosculating conies. 
If, further, we define the cross-ratio of four members of a one-
parameter family of conies to be that of the parameters which 
single them out in the family, we can conclude that the pairs of 
conies of equal eccentricity separate harmonically the osculating 
equilateral hyperbola and the ellipse of minimum eccentricity. 
In this involution of penosculating conies so determined the 
partner of the osculating parabola is the degenerate parabola 
consisting of the tangent to the given curve counted twice. Al­
though as Wilczynski found, there is in this family a unique 
ellipse of minimum eccentricity, there is no hyperbola of maxi­
mum eccentricity. The osculating equilateral hyperbola and the 
ellipse of minimum eccentricity appear as the double conies in 
this involution of penosculating conies. 

THE UNIVERSITY OF NORTH CAROLINA 

T H E BITANGENTIAL CURVE* 

BY T. R. HOLLCROFT 

1. Introduction. The bitangential curve of an algebraic sur­
face is the locus of the points of contact of planes which touch 
the surface in two points. I t is the reciprocal of the nodal de­
velopable. The order of this curve, for an algebraic surface 
without singularities of any kind, has been determined by Cay-
ley, f who called it the node-couple curve. 

When the surface has a nodal and a cuspidal curve, each of 
given order, the orders of the spinodal and flecnodal curves were 
found by Cayley. $ The order of the bitangential curve of a 
surface with nodal and cuspidal curves, however, has not been 
found explicitly. Basset§ makes the following statement: "I 
have not succeeded in ascertaining the reduction in the degree 
of the bitangential curve which is produced by a nodal and a 
cuspidal curve; but if the reduction is denoted by xb+yc, the 
method of the preceding paragraph indicates that x and y are 

* Presented to the Society, December 30, 1930. 
t A. Cayley, Collected Mathematical Papers, vol. 6, p. 346. 
t A. Cayley, loc. cit., vol. 6, pp. 342-343. 
§ A. B. Basset, A Treatise on the Geometry of Surfaces, Cambridge, 1910, 

p. 280. 


