If two pairs of operators ρ and τ and Σ and τ which generate the group are so selected that one of them ρ and τ satisfy a particular one of the sets of conditions imposed on S and T and if ρ happens to be the inverse of Σ then Σ and τ satisfy identically the same relations as ρ and τ . This follows from the fact that there is an outer isomorphism which transforms ρ into its inverse and leaves T invariant.

The University of Illinois

ONE-PARAMETER LINEAR FUNCTIONAL GROUPS IN SEVERAL FUNCTIONS OF TWO VARIABLES*

BY A. D. MICHAL

Let

(1)
$${}^{j}_{i}H(x, y), \qquad (i, j = 1, 2, \cdots, n),$$

be a given set of n^2 real continuous functions of the two real variables x and y defined over the triangular region $T:a \le x \le y \le b$. Consider the system of *n* integro-differential equations \dagger

(2)
$$\frac{\partial_i z(x, y; \tau)}{\partial \tau} = {}^i_i H_{\star j} z(x, y; \tau), \quad (i = 1, 2, \cdots, n),$$

in the *n* unknown functions ${}_{1}z(x, y; \tau)$, ${}_{2}z(x, y; \tau)$, \cdots , ${}_{n}z(x, y; \tau)$. The symbol \star in (2) stands for Volterra's operation composition of the first kind

(3)
$$\int_{x}^{j} H_{\star j} z(x, y; \tau) = \int_{x}^{y} \int_{x}^{j} H(x, s)_{j} z(s, y; \tau) ds.$$

We assume that the reader is conversant with the theory of permutable functions and functions of composition, a subject initiated by the illustrious Vito Volterra.[‡] Griffith C. Evans§

100

^{*} Presented to the Society, December 30, 1930.

[†] Throughout the whole paper we shall adhere to the convention of letting a repetition of an index in a term once as a subscript and once as a superscript denote summation with respect to that index over the values $1, 2, \dots, n$.

^{\$} See, for example, Volterra et Pérès, Leçons sur la Composition et les Fonctions Permutables.

[§] See his Cambridge Colloquium Lectures, Functionals and their Applications.

has given some very noteworthy contributions to this subject.

Define a set of n^2 functions ${}^{i}_{k}K(x, y; \tau)$ in terms of the given set of functions ${}^{i}_{k}H(x, y)$ by

(4)
$${}^{i}_{i}K(x, y; \tau) = {}^{i}_{i}H(x, y)\tau + {}^{k}_{i}H_{\star k}{}^{i}_{k}H(x, y)\frac{\tau^{2}}{2!} + {}^{k}_{i}H_{\star k}{}^{i}_{k}H_{\star l}{}^{i}_{k}H(x, y)\frac{\tau^{3}}{3!} + \cdots$$

For n=1, this set reduces to the well known Volterra transcendental.

THEOREM 1. Under the above hypotheses on the given functions ${}^{j}_{t}H(x, y)$, the system of integro-differential equations (2) possesses one and only one solution ${}_{1}z(x, y; \tau), \cdots, {}_{n}z(x, y; \tau)$ analytic in τ (in fact entire in τ), continuous in x and y in the region T and such that it takes on the initial conditions

(5)
$$_{i}z(x, y; 0) = _{i}z(x, y),$$

(z(x, y) continuous in T) for $\tau = 0$. This unique solution can be written in the form

(6)
$$iz(x, y; \tau) = iz(x, y) + iK(\cdots; \tau) \star iz(x, y),$$

where the n^2 functions ${}^{i}_{i}K$ are the generalized Volterra transcendentals (4).

The proof of this theorem is obtained by throwing the integrodifferential system (2) into the form of a system of non-linear integral equations

(7)
$$iz(x, y; \tau) = iz(x, y) + \int_{0}^{\tau} iH_{\star i}z(x, y; \sigma)d\sigma,$$

and then solving this system by the method of successive approximations. We are thus led to consider the functions $z(x, y; \tau)$ given by (6). By calculation one sees that this set of functions is a formal solution of the integro-differential system and takes on the given initial conditions. In fact the transcendentals ${}^{i}_{K}(x, y; \tau)$ satisfy the integro-differential equations

(8)
$$\frac{\partial_i^{\prime}K(x, y; \tau)}{\partial \tau} = {}^{i}_{i}H(x, y) + {}^{k}_{i}H_{\star k}K(x, y; \tau),$$

÷

1931.]

and hence the $z(x, y; \tau)$ of (6) yield a formal solution of the system (2).

It follows directly from the definition (4) that the generalized Volterra transcendentals are *entire* functions of τ and continuous in x and y throughout the region T. Hence the set of functions (6) form an actual solution of (2) of the required sort.

If $w(x, y; \tau)$ is another solution of (2) of the required sort, it follows from (7) that it is possible to find a positive number A < 1 such that

$$\max \left| \left| \left| \left| z(x, y; \tau) - \left| w(x, y; \tau) \right| \right| \leq A \max \left| \left| \left| z(x, y; \tau) - \left| w(x, y; \tau) \right| \right| \right| \right|$$

for sufficiently small values of τ . But z and w are analytic functions of τ . Hence

$$_{i}z(x, y; \tau) \equiv _{i}w(x, y; \tau).$$

This shows that the solution of (2) of the required sort is unique, which completes the proof of our theorem.

Thus the integro-differential system (2) generates a continuous one-parameter family of functional transformations (6). Moreover, one can verify that the generalized Volterra transcendentals $\frac{i}{K}$ possess the following integral addition theorem:

(9)
$${}^{i}_{i}K(x, y; \tau_{1} + \tau_{2}) = {}^{i}_{i}K(x, y; \tau_{1}) + {}^{i}_{i}K(x, y; \tau_{2}) + {}^{i}_{k}K(\cdots; \tau_{2}) \star {}^{k}_{i}K(x, y; \tau_{1}),$$

and that this integral addition theorem characterizes the n^2 transcendentals ${}_{i}^{j}K(x, y; \tau)$. We have thus arrived at the following fundamental theorem.

THEOREM 2. The integro-differential equations (2) (infinitesimal transformations) generate the one-parameter continuous group of linear functional transformations (6) in the functions $_1z(x, y)$, $_2z(x, y), \dots, _nz(x, y)$. Moreover the identity transformation is obtained by putting the parameter τ equal to zero.

Consider the particular case in which

(10)
$$\begin{cases} {}^{i}H(x, y) = 1, \text{ if } j = n - i + 1, \\ = 0, \text{ otherwise.} \end{cases}$$

The integro-differential system (2) for this case becomes

LINEAR FUNCTIONAL GROUPS

(11)
$$\frac{\partial_{i} z(x, y; \tau)}{\partial \tau} = 1_{\star_{n-i+1} z(x, y; \tau)}.$$

By calculation we obtain

(12)
$$\begin{cases} {}^{j}_{i}K(x,y;\tau) = \sum_{n=1}^{\infty} \frac{\tau^{2n}(y-x)^{2n-1}}{(2n)!(2n-1)!}, & \text{if } j = i, \\ \\ = \sum_{n=1}^{\infty} \frac{\tau^{2n-1}(y-x)^{2n-2}}{(2n-1)!(2n-2)!}, & \text{if } j = n-i+1, \\ \\ = 0, & \text{otherwise.} \end{cases}$$

These expressions can be written in terms of the Bessel function $J_1(z)$ of order one.* Putting u = y - x, we obtain

(13)
$$\begin{cases} {}^{i}_{i}K(x,y;\tau) = \frac{\tau^{1/2}u^{-1/2}}{2} \{ I_{1}[2(\tau u)^{1/2}] + J_{1}[-2(\tau u)^{1/2}] \}, \text{ if } j = i, \\ = \frac{\tau^{1/2}u^{-1/2}}{2} \{ I_{1}[2(\tau u)^{1/2}] - J_{1}[-2(\tau u)^{1/2}] \}, \\ = 0, \text{ otherwise.} \end{cases}$$

In these formulas,

$$I_1(z) = -iJ_1(iz), \ (i = (-1)^{1/2}).$$

For j=i the integral addition theorems (9) for the special case (13) yield the addition theorem

(14)
$$\begin{cases} (\tau_{1} + \tau_{2})^{1/2} u^{-1/2} A [(\tau_{1} + \tau_{2})u] \\ = \tau_{1}^{1/2} u^{-1/2} A [\tau_{1}u] + \tau_{2}^{1/2} u^{-1/2} A [\tau_{2}u] \\ + (\tau_{1}\tau_{2})^{1/2} \int_{0}^{u} [(u - v)v]^{-1/2} \\ \cdot \{J_{1}[-2(\tau_{2}(u - v))^{1/2}] J_{1}[-2(\tau_{1}v)^{1/2}] \\ + I_{1}[2(\tau_{2}(u - v))^{1/2}] I_{1}[2(\tau_{1}v)^{1/2}] \} dv, \end{cases}$$

where

$$A[\tau u] = J_1[-2(\tau u)^{1/2}] + I_1[2(\tau u)^{1/2}].$$

1931.]

^{*} A. D. Michal, Annals of Mathematics, vol. 26 (1925), for the corresponding case of the Volterra transcendental.

By an application of a known theorem^{*} one can verify that $I_1(z)$ possesses the following integral addition theorem:

(15)
$$\begin{cases} (\tau_{1} + \tau_{2})^{1/2} u^{-1/2} I_{1} [2((\tau_{1} + \tau_{2})u)^{1/2}] \\ = \tau_{1}^{1/2} u^{-1/2} I_{1} [2(\tau_{1}u)^{1/2}] + \tau_{2}^{1/2} u^{-1/2} I_{1} [2(\tau_{2}u)^{1/2}] \\ + (\tau_{1}\tau_{2})^{1/2} \int_{0}^{u} [(u-v)v]^{-1/2} I_{1} [2(\tau_{2}(u-v))^{1/2}] I_{1} [2(\tau_{1}v)^{1/2}] dv. \end{cases}$$

Moreover

$$J_1(z) = iI_1(-iz),$$
 $(i = (-1)^{1/2}).$

Hence by calculation we see that $J_1[-2(\tau u)^{1/2}]$ has precisely the same integral addition theorem as that of $I_1[2(\tau u)^{1/2}]$.

The remaining relations (9) for the particular system (10) do not yield any essentially new integral addition theorems for the Bessel functions.

THEOREM 3. The group properties of the continuous one-parameter family of functional transformations that is generated by the integro-differential system (11) are translated by the integral addition theorem

$$\begin{aligned} &(\tau_1 + \tau_2)^{1/2} u^{-1/2} J_1 \Big[- 2((\tau_1 + \tau_2)u)^{1/2} \Big] \\ &= \tau_1^{1/2} u^{-1/2} J_1 \Big[- 2(\tau_1 u)^{1/2} \Big] + \tau_2^{1/2} u^{-1/2} J_1 \Big[- 2(\tau_2 u)^{1/2} \Big] \\ &+ (\tau_1 \tau_2)^{1/2} \int_0^u \Big[(u - v)v \Big]^{-1/2} J_1 \Big[- 2(\tau_2 (u - v))^{1/2} \Big] J_1 \Big[- 2(\tau_1 v)^{1/2} \Big] dv \end{aligned}$$

for the Bessel function $J_1(z)$ of order one.

CALIFORNIA INSTITUTE OF TECHNOLOGY

* H. P. Thielman, Annals of Mathematics, vol. 31 (1930), p. 193.

104