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ON T H E TRIGONOMETRIC EXPANSION OF 
ELLIPTIC FUNCTIONS* 

BY M. A. BASOCO 

1. Introduction. The problem of expressing an elliptic func
tion in terms of infinite sums of trigonometric functions has 
been treated by Hermite,t Briot and Bouquet,% A. C. Dixon§ 
and others. In the present paper we treat the same problem 
from the point of view of Cauchy's residue theorem in function 
theory, which is also Briot and Bouquet's starting point, but 
we differ from these authors in that the integrand we use leads 
to an expansion for an elliptic function which is valid in an 
arbitrarily wide, but finite, strip of the complex plane, and 
which contains certain classical results as special cases. An 
interesting feature of our expansion is that it yields quite di
rectly the Fourier series development of the function. Some 
examples of this property are indicated as an illustration of the 
applicability of our formula. I t should be noted that the 
integrand used was first given by F. Gomes Teixeira^f in another 
connection. 

2. Expansion of f(z). Let f(z) be an elliptic function with 
periodsT and 7rr, where r = / J + ^ V , JU, v real and v > 0 . Suppose that 
in a fundamental period cell f(z) has k poles, z = ar , (r = l , 
2, • • • , k). Further, let the order of these poles be mrj so that 
in the neighborhood of z = ar,f(z) has the Laurent expansion 

A ( r ) A ( r ) A ( r ) 

(1) /(*)=- — + • • • + ; - + + P{t-Or), 
(z — ar)™*- (z — ar)

2 z — ar 

where P(z — ar) is a power series in z — ar. 

* Presented to the Society, December 30, 1930. 
t C. Hermite, Annales de Toulouse, vol. 2 (1888). (See also Halphen, vol. 1, 

p. 461.) 
{ Briot and Bouquet, Théorie des Fonctions Elliptiques, 2d éd., 1875, p. 

286. 
§ A. C. Dixon, Quarterly Journal of Mathematics, vol. 34, p. 222. 
f F. Gomes Teixeira, Sur les séries ordonnées suivant les puissances dfune 

fonction donnée. Journal fur Mathematik, vol. 122, pp. 97-123. 
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Consider a parallelogram pqrs consisting of (/3+1) period cells 
abovejthe real axis and a below, so that we may write \sp\ —TT 
and \pq\= \mr\ (a+|8 + l ) . In this parallelogram, f(z) has 
(a+fi + l)k poles which may be represented by the affixes 

dr+pTTT 

O 

M-

• ar 

ar—a7TT 

-N 

( r = 1, 2, 3, • . • , *; 
= ar + MITT, < 

{ m = — a, — a + 1, • • • , — 1, 0, 1, 2, • • • , 0. 

The function of t 

(2) 0(0 E — = f{t) { — + — ctn (t-z)} 
eiil - e2i* I 2 2* j 

has, in the parallelogram £grs, poles at t = z and i=ar+W7TT; the 
corresponding residues are easily calculated and found to be 

1 

2? 

1 1 mr 

(3) -ƒ(*), and - ix r ) + — E £>„_ m ctn (cor,m - z), 
2î r; (*- D! r,M 

where D(5_1) is the differential operator of order (s — 1) and 
a)r,m is the argument ar+mwr which is to be substituted after 
the differentiation has been performed. 
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On integrating <j>{t) around the contour C of the parallelogram 
pqrs we obtain, by Cauchy's theorem, the expression 

(4) 

l C ƒ( 
ƒ(*) = — I — 

f(t)e2it 

s>2iz 
dt 

mr k /3 

+ E E E 
(r) 

«=1 r = l m = - a ( $ — 1) ! 

A8 ^(«-D / N 

i )« r ) mctn (0 - cor,m). 

In writing (4) we have also used the fact that for an elliptic 
function the sum of its residues in any period cell vanishes. 

The integral in (4) may be transformed into an infinite series 
in the following manner. Due to the fact that the integrand has 
the period wy the integrals along pq and rs cancel. Further, 
along sp we have 

1 0Î.XZ (Aiz 

+ — + — + 
while along rq, 

1 

it p2iz p2it p\it p6it 

/ 1 e2it eut \ 

( + + + • • ). 
\e2iz euz em / 

It follows that our integral may be written in the form 

7T { J (sp) w==o J fa) n = l / 

Interchanging the order of integration and summation, which 
is permissible, and using the notation 

Cn = — ( f{t)e-^dt, 
7T J <sp) 

C_» = — l f (fieldt, 
T J\rq) 

we may write the formula (4) in the form 
n=oo 

(6) ƒ(*) = ZC»e2"" 

(5) 

(n = 0, 1,2, • • • ) ; 

(n = 1, 2, 3, • • • ), 

mr k m-

+ Z E E 
Ar) 

s= l r - 1 m = - a \S — 1 ) ! 
D« ctn (s — wr,w). 
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3. Advantage of the Function <t>(t). The particular advantage in 
using the integrand <[>(t) is that it leads in a natural manner to 
the expressions in (5) for the constants Cn and C_w, all of which, 
with the exception of Co, may be readily calculated. Thus, to 
compute Cn, integrate ƒ(t)e~2nit around the contour spp's' and 
apply Cauchy's theorem. Proceeding in the usual manner, it is 
readily found that the sum of the residues of the integrand, 
relative to the poles t = ar—OUKT, has the value 

(r) 

i A ( - 2nt)-iA. . 
QIUO. y y g— 2niar 

r - 1 «»1 (S ~ 1) ! 

Furthermore, the integrals along ppf and ss' cancel while 

where, as usual, q = e*iT. 
We therefore find that 

(r) 

1 - q2n r-i *-i (̂  — 1)1 

( » = 1, 2, 3, . . . ) . 

I t should be noticed that C0 is left undetermined. 
In a similar manner, applying the residue theorem to the 

function f(t)e2nit, using the parallelogram r'q'qr as contour of 
integration, we find that 

(8) c.n = f—- z z S^-irr*2^-
If now, (7) and (8) are substituted in (6) we obtain the result 

(r) 

ƒ(*) = Co + E E E , 1W1 ' {g2""e-^^> 
r-l «-1 n»l U - 1) ! (1 - q*n) 

(9) 
-i- ( \\8q2ncte2ni(z— ar) J 

m^ m-3 ^ ( f _ x ) 

+ Z Z Z T— !-7r f^ r tWctn(2-~a) r,m), 
r ~ l «~1 m — a U ~ V 1 
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which is valid in the strip bounded by the lines KL and MN. 
The width of this strip is, of course, determined by the values of 
the integers a and (3. 

4. Some Special Cases. The following special cases of (9) 
are of interest. First, suppose that all the poles oîf(z) are simple, 
so that mr = 1 ; further let a = 0, |8 = 0. Then 

(r) 

f(z) = Co + 4 £ £ T s i n 2<z ~ a') 

(10) k 

Z i 1 -

+ ]C^1 C t n (* "~ ör), 
r = l 

which is another form of the classical formula of decomposi
tion 

A n&i(z — ar) 
(11) f(x)=C0+ I > 1 " ~ 7> 

r-1 t^l(« — Or) 

where #1(2) is one of the Jacobi theta functions. 
Again, let a and ]8 become infinite; then since the absolute 

value of q is less than unity, it is easily seen that (9) becomes 

k mr m=oo J^ (r) 

(12) ƒ(*) = Co + Z E E T - ^ o i . ctn (« - «, . . ) , 

where 
<̂ 0 = — I ƒ ( / ) * , 

which is given by Briot and Bouquet (loc. cit. p. 291). 
Various other forms may be given to formula (10). Thus, 

since we have the identity 

2 °° 
i ctn (z - Or) s 1 = 1 + 2 y\2™<*-«r>, 

(provided rj>fir, where z = ̂ +irj and ar=Xr+^Mr), and since the 
sum of the residues is zero, we may write 

k Air) 

(13) ƒ(*) « Co + 2% E Z (q2ne-2ni(z-ar) _ ^*<(r-*>) f 

n-1 r-l 1 - q2n 
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which holds in a strip of the period cell such that I(z) >I(ar). 
In a similar manner, (10) may be written in the form 

oo * A
{ T ) 

(14) ƒ(*) = Co + 2iX) Z (e-*ni(z-ar) _ ^ « « r - o ^ 

n==1 r==1 1 - q2n 

which is valid provided I(z) <I(ar). 

5. Conclusion. In this concluding section we shall use our 
formula (9) to obtain the Fourier series expansion of certain 
elliptic functions. We shall first consider the Weierstrass $ func
tion, which in the neighborhood of the origin has the expansion 

, w _ ± + i_V + .... 

If in (9) we put 

a = 0, 0 = 0, mr = 2, Ai = 0, A2 = 1, ar = 0, 

we obtain at once 
1 °° flQ2n 

(15) p(s, 7T, TTT) = CO H 8 ^ cos 2ws. 
sin2*; n . i 1 — g2n 

The determination of Co follows immediately from the fact that 

lim( tp(z) J = 0. 
2-0 \ Z2 / 

Thus, we obtain 

1 / - nq*n \ 1 # / " 
(16) Co = —( - 1 + 24 E " ) = T * 

3 \ r i 1 - g2 */ 3 tV 

Next, let us consider the square of the #> function : 

V2(z) = - + 7~ + c^ + * * ' • z4 10 

If, in (9), we put 

A\ = A2 = As = 0, ^44 = 1; « = jo = 0; mr = 4, ar = 0 

it will follow, after a slight reduction, that 
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1 2 
(17) vKz, T, TT) = Co + 

sin4 z 3 sin2 z 

16 " n*q2n 

H V cos 2nz. 
3 ^ 1 - q2» 

The constant Co is now determined by the condition 

lim( p2(z) ) =~, 
^ o \ z4/ 10 

and the fact that 

4 " nzq2n 

+ 320 E 
3 " i l - q2n 

(see Tannery-Molk, vol. 4, p. 107). I t is found that 

1 / " n*q2n \ 
(18) Co = — ( 1 + 240 £ ). 

9 \ Zl 1 - q2nJ 
As a last example we shall consider the square of the Jacobi 

sine-amplitude function and its reciprocal. In terms of the theta 
functions, these are essentially equivalent to 

and , 
tV (s ) #i2(s) 

respectively. To obtain an expression for the first of these we 
put, in (9), 

a = fi = 0; Ax — 0, A2 = 1; ar = —; mr = 2. 

The constant Co is here determined by the fact that the function 
vanishes at the origin. After a slight calculation we obtain the 
expansion 

êi2(z) * nqn 1 
(19) êi$i—— = 8 Z + 

#o2(s) Z Î 1 - q2n 

™' (• - ï) 
8 23 — - — c o s 2n \z — ) • 
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If we replace z by Z+WT/2, we obtain 

{Ifyêiûï-^- = 8 £ — — + * Z — - — cos 2ns. 
W (z) ntî 1 - q*« sin* z n t ï 1-g2» 

From (19) we may derive a Fourier series in which the argu
ment is z. Thus, since 

1 - 4qe-2i* A 
= = — 4 V^tfV~2ni*, 

^ _ 7TT\ (1 ~ qe-^Y Z i 

provided tq</wv/21 where z — ^+irj and r=ju+iz>, we find, after 
some reduction, 

ûi2 (g) « w?w 

(21) #2
2#3

2 = 8 ^ (1 - cos 2»»), 

which is valid in a strip bounded by lines through ±wr/2 and 
parallel to the real axis. 
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