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ON T H E ZEROS OF EXPONENTIAL 
SUMS AND INTEGRALS* 

BY R. E. LANGER 

1. Introduction. It is of frequent occurrence in problems of 
both pure and applied mathematics that certain values sought 
may be specified and must be determined as the roots of a tran
scendental equation. In particular, the equation may be of the 
class in which the unknown is involved only through the 
medium of exponential or trigonometric functions, with coef
ficients which are power functions or essentially such. As simple 
examples one has such equations as 

tan z - z = 0, e' + z2eZz + (1 - z) = 0, 

sin z + z3 tan 5s = 0, eiz — 2s5 = 0. 

A determination of the distribution of roots of such an equation 
may, therefore, be of interest and importance. Inasmuch as 
this problem and certain of its generalizations have been the 
subjects of recent and successful investigations I have presumed 
that an outline of methods and attainments associated with it 
might not be unsuitable for presentation at this meeting of the 
Society. 

The relation between the trigonometric functions of z and the 
function eiz evidently makes possible the expression of each of 
the functions involved in the equations above in the form 

n 

(1) $(a) = 2>/(*)e°''. 

This type of function we shall refer to as an exponential sum. 
It is to be the subject of Part I of the discussion to follow. If 
the values A3-(z) and Cj are constants, and the Cj are real, the 
function (1) can be expressed with the use of an appropriate 
constant ZQ and a suitable step-function <£(/) in the form 

* An address delivered at the meeting of the Society at Columbia, Mis
souri, November 29, 1930, by invitation of the program committee. 
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(2) $(z - zo) = z J <j>{t)etzdt. 

The integral of the type here involved with less specialized func
tion </>(/) represents, therefore, a generalization of certain sums 
of type (1). Such integrals include a number of standard func
tions of importance, among which the Bessel functions may be 
specifically mentioned. They will be considered briefly in part 
II öf this discussion. 

Returning to the consideration of the sum (1) we shall under
stand that the quantities Cj, to be called the exponents, are con
stants (real or complex). The functions Aj{z)1 to be called the 
coefficients, will be characterized as the discussion progresses by 
various sets of hypotheses. I t will be my general plan to pass in 
the considerations from forms of less to forms of greater gener
ality, and to indicate at each stage the results and their rela
tion with those previously established. 

PART I. T H E EXPONENTIAL SUM 

2. Constant Coefficients and Real Commensurable Exponents. 
When the exponents Cj in a sum of the form (1) are real, it is a 
matter merely of the arrangement of terms to suppose that these 
exponents occur in the order of increasing algebraic magnitude. 
With this arrangement it is then permissible without loss of 
generality to assume that the first exponent c0 is zero, inasmuch 
as the removal of any exponential factor can in no way affect 
either the number or distribution of the zeros of the function. 
These adjustments will be assumed to have been made. Theo
retically the simplest type of sum is one, then, in which the 
problem of the distribution of zeros is essentially an algebraic 
one, and this occurs in particular when the coefficients are con
stants (,4,-(2;)=a,-), and the exponents are commensurable, that 
is, Cj = ap3', i = l, 2, • • • , n, with some real constant a and in
tegral values pj. The sum is then of the form 

n 

(3) *(s) = DaX*»)1", p» = 0, 

which is a polynomial of degree pn in the quantity eaz. If this 
polynomial admits as zeros the values §i, £2, • • • , ?Pn, the func-
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tion (3) vanishes for such values of z, and for only such, as 
satisfy a relation 

eaz = h. 

The zeros of $(z) are, therefore, given by the formula 

fA\ 1 (o • . i y \ (7 = 1, 2, • • • , pn), 
(4) z = —{2f»Tt + logt,-), o 

a (w = 0, ± 1, ± 2, • • • ) . 
They are thus seen to be denumerably infinite in number and to 
be distributed in the complex z plane at regular intervals of 
length 27r/a along pn lines (not necessarily distinct) which are 
normal to the axis of reals. 

If the explicit solution of the polynomial equation involved is 
feasible, the determination of the zeros of $(z) is completed by 
the formula (4). In the alternative case the following further 
considerations will not be futile. I t is clear from the result (4), 
that with any specifically given function $(z), the choice of a 
constant K is possible so that the zeros of 3>(z) all lie within the 
rectilinear strip of the z plane given by the relation 

(5) | x | < K, (z = x + iy). 

Any line y=yi, parallel to the axis of reals, cuts this strip, and 
on such a line it is found by direct computation that 

ƒ{—*(*)} = X>/(?i)(*"0*', 
U o ; -•„! 

(6) 

the coefficients b3- being real constants with values depending 
upon yi. The expression (6) is a polynomial in the positive 
quantity eax. As such it can vanish, by Descartes's rule, at 
most as many times as there are changes of sign in the sequence 
of values b3: This cannot exceed (n — 1), since the number of 
terms in (6) is n. 

Let R designate the rectangular region cut from the strip (5) 
by two lines y=yi, and y =y2} chosen so that on neither of them 
there lies a zero of $(z). (There will evidently be such lines 
through any interval of the y axis, however small.) Then as z 
traces either of these lines the value arg $(2) can change (in
crease or decrease) by at most rnr since l{ ( l /a 0 )*(s )} vanishes 
no oftener than (n — 1) times. As z traces the side x= — K of 
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the rectangle R the value of the sum $(0) remains arbitrarily 
near that of its first term a0 (provided K has been chosen suf
ficiently large), and the change in arg $(0) accordingly remains 
arbitrarily near to 0. Lastly as z traces the side x = K the 
change in arg $(0) is an increase in value arbitrarily near to 
cn(y2~yi), since $(0) on this side of the rectangle is approxi
mated with an arbitrary degree of accuracy by its last term 
ane

Cn\ From this evaluation of the extreme possible changes in 
arg $(0) as z traces the boundary of the rectangle it must be 
concluded that the number n{R) of zeros of $(0) within the 
rectangle is subject to the bounds 

(7) - n + —(;y2 — y\) ^ n(R) ^ n + —(y2 - yi). 
Z7T Z7T 

This evidently limits, both above and below, the density of zeros 
in any portion of the strip (5). In particular it shows that no sum 
of the form (3) with (n+1) terms can have a zero of multiplicity 
greater than n. 

THEOREM 1. If in the exponential sum (1) the coefficients are 
constants and the exponents are real and commensurable, then the 
distribution of zeros is given explicitly by the formula (4). In this 
distribution the number of zeros which lie between two lines y=yu 
and y=y2, is restricted by the relation (7). 

The hypothesis of commensurability of the exponents is evi
dently a restrictive one. Yet many functions $(0) of importance 
and interest are included by it. I t will be observed, for instance, 
that the hypothesis is vacuous whenever the sum involves only 
two terms, and the results obtained apply, therefore, to all such 
sums. Similarly the familiar trigonometric sums 

n 

X X COSJ0, 

n 

^aj sinj0 

are included, as is in fact any linear combinaton of trigono
metric functions of integral multiples of 0 (iz naturally replacing 
0). While the problem is in this case theoretically simple, the 
interrelation of algebraic and transcendental features may be 

(8) 
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of distinct interest. The following theorem, due to Pólya,* is at 
once illustrative of this point and useful for later reference. 

THEOREM 2. If the coefficients a3> are real and the zeros of the 
polynomial 

(9) P(Ö = Z a& 
3-0 

all lie within the unit circle about £ = 0, then the zeros of the corre
sponding trigonometric sums (8) are all real and simple. Each of 
these sums has precisely 2n zeros on the interval 0^z<2w and the 
zeros of either sum alternate with those of the other. (By a theorem 
of Kakeya the hypothesis is fulfilled if 0^<Zo<#i< • • • <an.) 

The proof is exceedingly simple. Under the hypothesis made 
a r £ -P(£) increases by 2nw as £ traces the unit circle, that is, 
arg P(eiz) increases by that amount as z traces the axis of reals 
from 0 to 27T. But when z is real the sums (8) are respectively 
the real and imaginary parts of P(eiz). Hence these sums vanish 
in alternation, each 2n times on the interval 0^2<27r. That 
the zeros are thus all accounted for follows from the fact that 
each of the sums (8) may be expressed as a polynomial of 
degree 2n in eiz. 

3. Constant Coefficients and General Real Exponents. When 
the exponents are not commensurable the determination of the 
distribution of zeros of $(0) is not in general of an algebraic 
character. Independent discussions of the problem in this case 
have been given by C. E. Wilder2 and by J. D. Tamarkin.3 In
asmuch as the subject has to some extent been anticipated by 
the discussion of the preceding section a slight amplification of 
the reasoning there used will suffice here for the derivation of 
such results as have been obtained. 

The sum $(z) for the case in hand is expressed by the formula 

n 

(10) $(*) = 2>y^«, co = 0. 
y=o 

Given such a function it is easily seen that with K chosen as a 
constant sufficiently large the zeros of $(z) all lie within a strip 
of the z plane determined by a relation (5). This may be de-

* See list of references at the end of this paper. 
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duced from the dominance of the first term of the sum (10) over 
all remaining terms for values of z satisfying the condition 
x< — K, and the similar dominance of the last term of the sum 
when x>K. The change in arg #(2) as z traces any portion of 
the lines x= —K or x = K may be computed precisely as in the 
case of the preceding section and the establishment of the relation 
(7) depends only on the consideration of the quantity 

(il) /{-#(*)} = 2X(yV'*, 

on a line for which y is constant. Since the expression (11) is 
now not a polynomial Descartes's rule may not be invoked. It 
is, however, easily proved that in this case also the expressions 
can vanish at most as many times as there are changes in sign 
in the sequence of coefficients (see Pólya and Szegö, Aufgaben 
und Lehrsdtze aus der Analysis, vol. 2, p. 49) and hence the re
lation (7) is valid as before for any rectangle R cut from the 
strip (5) by a pair of lines y—yi and y=y2 on neither of which 
I $(z) I is zero. The existence of such lines through any interval 
of the y axis follows, of course, from the regularity of the func
tion $(2). 

I t is a fact of considerable importance in many considerations 
that in the case of an exponential sum the value |4?(z) | is uni
formly bounded from zero when the variable z is uniformly 
bounded from the zeros of $(s) . This means that given a suf
ficiently small positive 8 there exists a constant H depending 
only on ô and such that 

(12) J *(*) I > H, for \ z - zm\ >ô, 

where zm designates the set of zeros of $(z). The fact is obvious 
when consideration is restricted to any finite portion of the z 
plane. In the case of commensurable exponents it then follows 
for the entire strip (5) and hence for the entire z plane because 
of the periodicity of the function $(s). The fact may also be 
established (see Wilder2 or Tamarkin3), though less simply, in 
the general case. 

THEOREM 3. If in the exponential sum (10) the coefficients are 
constants and the exponents are real, then the zeros of the sum all 
lie within a strip (5), and in any portion of this strip the number 
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of zeros is limited by the relation (7). When z is uniformly bounded 
from the zeros of $(z),then \$(z) \ is uniformly bounded from zero. 

I t may not be devoid of interest to remark that the distance 
between distinct zeros of <£(s) admits of no positive lower bound 
in the general case of incommensurable exponents. This is shown 
by the simple and explicit example $(z) = (1— eaz)(l— e^z)f in 
which a/(3 is irrational. The formula (4) shows that when the 
exponents are commensurable a minimum distance between 
zeros does exist. 

4. Coefficients Asymptotically Constant. In many considera
tions associated with the distribution of zeros of a function of 
type (1) the interest centers directly only upon the character of 
this distribution in the region of the z plane remote from the 
origin, that is, in the region |s|>ikf, where M is a constant 
arbitrarily large. When such is the case it is natural that the 
hypothesis of the constancy of the coefficients may be replaced 
without essential loss by a less stringent one to the effect that 
the coefficients be sufficiently like constants when \z | is large. 
To facilitate the formulation of such hypotheses we shall agree 
upon the use of symbolism as follows. In a region R of the z 
plane including the point z = oo a function will be called an 
epsilon function provided that it is analytic in every finite portion 
of R and that it approaches zero uniformly in R as \z |—»oo. To 
indicate such a function we shall use the generic symbol e(z). 

Let it be supposed now either that the coefficients A 3-(z) in the 
sum (1) are single valued and of the form 

(13) Ai(z) = *, + €(*), 

in the region \z \ > M, or that they are multiple valued but such 
that in the region \z \ > M, — w <arg z S T, their various 
branches are each of the form (13). In the latter case the several 
determinations of the coefficients correspond to distinct branches 
of the sum $(2), and the considerations which follow apply di
rectly to any one of these branches. The discussion may be 
completed by a similar consideration of each individual branch. 
The form assumed for the sum (1) is, therefore, 

n 

(14) * ( * ) = £ { « ƒ + «(*)}«"*, a0an?éO. 
j - 0 
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As already indicated it will be made a part of the hypothesis 
that neither of the two constants a0, an is zero. I t will be shown 
that the zeros of the sum (14) are asymptotically represented 
by those of the related sum 

n 

(15) $i(s) = 2 > / * " ' , 

which is of the type considered in §§2 and 3. 
I t may be shown to begin with, and by precisely the reasoning 

employed in the analogous consideration of §3, that there can be 
no zeros of the sum (14) outside a strip of the form (5) when 
\z | > M. Within this strip, on the other hand, each exponential 

is bounded and hence the function (14) is evidently expressible 
in the form 

*(s) = $!(*) + €(*), | x\ < K, | z\ > M. 

Now in virtue of the distribution of zeros of $1(2:), as de
termined in the preceding section, these zeros may be enclosed 
in groups of n or less by a succession of contours yr such that 
no point of such a contour lies within a distance less than 5 from 
a zero of $1(2), and each of the regions enclosed is of major 
diameter no. For values of z not within such a contour, \$i(z) \ 
is bounded uniformly from zero, as stated in Theorem 3, and 
hence for such values of 0, 

$(2) = $!(*) {1 + e(z)} . 

From this relation it follows that when \z \ >M, <&(z) has within 
each contour yr precisely as many zeros as $1(2), and that all 
zeros of $(2) are thereby accounted for. 

THEOREM 4. If the function $(z) (or a determination of it) is 
of the form (14), then in the region \z\>M the distribution of zeros 
of $(z) (or of the branch of $(z) in question) may be described as 
in Theorem 3. The zeros are asymptotically represented by those 
of the related sum (15). 

5. Coefficients which are Asymptotically Power Functions. I t 
will be supposed now that in the form (1) the coefficients A 3-(z), 
or chosen branches of them, are of the form 

(16) A,-(*) = z"{a3- + e(z)}, a0an 5* 0, 
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for z in the region \z\ >M, — 7r<arg Z^T. The values v,- are 
taken to be any real constants positive, negative or zero. 

The sums with coefficients of type (16) evidently include as 
a sub-class those with coefficients which are polynomials in z. 
A discussion of the latter was given first by Pólya6 and 
Schwengler.7 Their method, which is largely geometric, is in 
many respects convenient and illuminating and will be utilized 
in the following discussion whenever it is of advantage. 

Without further convention the values v3 (except for j = 0, 
and j = n) are not fixed beyond ambiguity by the form (16), in
asmuch as an increase in v3 may be compensated for by the 
choice of a3 as zero. I t will be assumed, therefore, for the sake 
of definiteness that whenever the form of the coefficient Aj{z) 
permits, the value v3 will be chosen so that the corresponding 
constant a3 is not zero. The terms of the sum for which this is 
possible will be called ordinary terms. In the exceptional non-
ordinary terms the value of v3 must remain unspecified. Under 
the form (16) the constant a3- for every such term will be zero. 
Thus, by way of example, if A3-(z)=log z, then the form (16) 
implies a3=0, with v3>0. 

As a preliminary to the discussion of the general case under 
(16) it will be convenient to consider that in which all terms are 
ordinary terms, and in which the constants v3 are proportional 
to the exponents c3. 

6. The Values v3 and c3 Proportional. If the real constant j3 
is defined by the relation 

vj = Pc h (j = 1, 2, • • • , n), 

the formula 

(17) f = z + p\ogz 

defines a single-valued analytic map of the portion of the z plane 
to which z was restricted above upon a complex f plane, the 
point z = oo corresponding to f = oo. I t follows that any epsilon 
function of z is also such a function of f, and it is evident, there
fore, that under the relation (17) 

n 

*(«) = 2 1 «f + «(f) 1 eCit> «oa» T* 0. 
j-0 
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This, however, as a function of f is precisely of the form (14), 
and in the f plane the zeros are accordingly distributed as de
scribed in Theorem 4. I t is necessary only to translate this 
result into terms of the variable z and this can be readily done. 
Thus if f = ̂ +irj the components of the relation (17) are 

£ = x + p log | z | , 

rj = y + p arg z. 

The rectilinear strip |£ | <K corresponds, therefore, to the curvi
linear strip bounded by the logarithmic curves 

(18) x + p\og\z\ = ± K. 

This strip which is asymptotically of constant width 2K, and 
whose bounding curves approach parallelism with the axis of 
imaginaries, contains all the zeros of $(z) in the region \z \ > M. 
Since for z in the strip (18) the value arg z approaches either 7r/2 
or — 7r/2 according as the upper or lower half plane is considered, 
it follows that any line 77=^1 on which rj is constant maps 
asymptotically upon the line y=r]ii.l3ir/2, on which y is con
stant. Moreover, the distance between two such lines both in 
the upper or both in the lower half plane is asymptotically pre
served. 

THEOREM 5. If in the exponential sum (1) the coefficients are 
of the form (16) with values Vj proportional to the exponents Cj, 
and all terms are ordinary terms, then the zeros of the sum are asymp
totically located within a logarithmic curvilinear strip bounded 
by curves of the form (18), and the number of zeros lying between 
any two lines parallel to the axis of reals is asymptotically subject 
to the relations (7). 

7. General Real Values vj. With each ordinary term of the sum 

n 

(19) Hz) = 5 > ' { a , + €(*)}«•'', 

there can be associated in the z plane the corresponding point 
Pj with Cartesian coordinates (c/, Vj). These points determine 
the broken (or straight) line L, which (i) joins P 0 with Pn, (ii) 
has vertices only at points of the set P,-, (iii) is convex upward 
(or straight), and (iv) is such that no points of the set lie above 
it. Let Lr designate the rth. segment of this broken line L, the 
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order being from left to right, and let the scheme of single sub
script notation employed in (19) and in designating the set of 
points Pj be replaced by one in which the points of the set 
lying on the segment Lr are denoted in order by Prh, (A==l, 
2, • • • , fir). 

If the sum (19) contains exceptional terms it must be made a 
matter of hypothesis that for every such term a choice of the 
value Vj is possible under the form (16) such that the correspond
ing point (e,-, Vj) lies below the broken line L. All points of the 
set located below the line L may then be designated in any 
order by P0h, (& = 1, 2, • • • , #0)> similar double subscripts being 
assigned to the corresponding terms in (19). 

Consider now any intermediate segment Lr of the line L, and 
let its slope be mn the slope of the preceding segment being 
ntr-i. Then as the real parameter k varies over the range 

mr-\ — € ^ k > mr — e, 

with e positive and sufficiently small but otherwise arbitrary, 
the curve 

(20) x = - k log | z | 

sweeps out the region of the z plane bounded by the curves 

x = - (mr-i - e) log | z\ , 

x — — (mr ~ e) log | z | . 

The figure is symmetrical in the upper and lower half planes. 
On any curve (20) it is obvious that 

I zvl8eclaZ I = I s I Vla~hcis 

and hence the relative magnitude of the terms in (19) for z on 
this curve depends upon the corresponding values (vu — kcu). 
These, however, admit of ready geometrical interpretation. They 
are, namely, the y intercepts of the lines having the slope k 
and passing through the respective points Pu. In virtue of this 
fact and the restriction upon the range of k it is readily seen 
that for every l^r the inequality 

(vu — kCu) < (vri ~ kCri) 

obtains. I t follows, therefore, that the form of expression 
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is valid for z on any curve (20), and hence that the sum (19) can 
be writ! m in the form 

nr 

(22) $(*) = J2zvrh{arh + e(z)}ecrk^ 

for all z of the region bounded by the curves (21). Upon removal 
of a factor zv^eCr^y however, the sum (22) takes the form con
sidered in §6, since the constants {vrn — Vr\) are proportional to 
the exponents (crh — cri), the constant of proportionality being 
mr, the slope of the segment Lr. I t may be concluded, therefore, 
by Theorem 5, that the zeros of $(z) in the region (21) are 
asymptotically confined to the logarithmic strip bounded by 
the curves 

(23) x + mr log | z | = ± K, 

and that the number of zeros in this strip and between two lines 
y=yi and y=y% is restricted by the relation obtained from (7) 
by replacing n and cr by nr and (cr,nr — crl). 

The geometric picture is completed if it is observed that in the 
upper half of the plane the central line of the strip (23), that is, 
the curve 

(24) x -\- mr log | z I = 0 , 

passes through the point (0, 1) with slope —l/mr, namely in 
the direction perpendicular to that of the associated segment L r. 
There is a strip of the form (23) associated with each segment of 
the broken line L (obvious simple modifications of the discussion 
being necessary in the case of an end segment), and the zeros of 
<&(z) in the remote part of the z plane are all contained within 
these strips. 

THEOREM 6. If $(z) is an exponential sum with coefficients of 
the form (16) (the Vjfor exceptional terms satisfying the hypothesis 
of the text), then the zeros of the sum are asymptotically confined to 
a finite number of logarithmic strips (23), the number of zeros in 
any strip between two lines parallel to the axis of reals being 
asymptotically subject to a relation similar to (7). 

8. Collinear Complex Exponents. The hypotheses which have 
been made in the various cases of the sum (1) hitherto con
sidered have been concerned primarily with the structure of the 
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coefficient functions Aj(z). The exponents have been assumed 
throughout to be real. I t will be shown now that this assump
tion is dispensable, and that the distribution of zeros of the sum 
having complex exponents is also determinable. Preliminary to 
the general discussion the considerations of this section will be 
given to the case in which the values Cj viewed as points in the 
complex plane are collinear. 

Let / designate the line on which the points Cj are located, and 
let the subscripts be assigned to these points in the order of their 
location on /. Then if 6 designates the inclination angle of the 
line I with respect to the axis of reals (the positive sense of I 
being from c0 to cn), it follows that the relations 

Ci = co + y^e*', (j = 0, 1, 2, • • • , n), 

are satisfied by a set of real values 0 = Y 0 < 7 I < • • • <7n. In 
terms of the variable f defined by the relation 

(25) f = ze», 

the sum (1), therefore, takes the form 

n 

(26) * = e°" 2X(r)eV, 

where B3-(Ç)=Aj(z) under the substitution (25). The sum in 
(26) is one in which the exponents 7 / are real, and the coef
ficients 5/(f) have the essential structural characteristics of 
Aj(z). The distribution of zeros of the sum 3> in the £* plane is, 
therefore, as described in the theorems of the preceding sections, 
that is, the zeros are asymptotically confined to one or more 
strips which are parallel or approach parallelism with the axis 
arg f = ± 7 T / 2 . Since the transformation (25) is a mere rotation 
of the plane, it may be concluded that in the z plane the zeros 
of the sum are confined for | s | > A f to a similar set of strips 
parallel or approaching parallelism with a direction arg z = — 6 
± 7 T / 2 . These directions, it will be noted, are those perpendicu
lar to the line in the complex plane which contains the points 
Cj, the complex conjugates of the exponents Cj. 

THEOREM 7. If the exponents ct- in the exponential sum (1) are 
collinear complex constants, the distribution of zeros of $(z) is 
obtainable from the theorem previously enunciated by substituting 
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in the role of the axis of reals the line containing the points c3- con
jugate to the exponents c3\ 

9. General Complex Constants. In the most general type of 
exponential sum to which consideration will here be given the 
exponents may be any set of complex constants. This case is 
now mature for discussion. While treatments of it by purely 
analytic methods are available2,3'4«5 and effective, a geometric 
method6 will again be resorted to as convenient for the purpose 
at hand. Let it be supposed that the values dj (conjugate to the 
exponents) have been plotted in the complex plane, and let the 
points of the set so represented be surrounded by the polygon 
P which (i), is convex, (ii), has vertices only at points of the set, 
and (iii), includes all points of the set either in its interior or on 
its perimeter. 

Let the sides of the polygon P taken in counterclockwise 
succession with any one as the initial one be designated by lr, 
r = l, 2, • • • , g, and with this done let the points of the set Cj 
which lie on the side lr be redesignated by crh, h = l, 2, • • • , hr, 
the succession being again in the counterclockwise sense around 
the polygon P. The points Cj lying within the polygon may in 
conclusion be denoted (in any order) by coh, h = 1, 2, • • • , h0. 

If cor represents the inclination angle of the outer normal to 
the side lr, the relation 

COr_i + € g T < C0r + €, 

with € sufficiently small and positive but otherwise arbitrary, 
restricts the real parameter r. As r varies over the range per
mitted, the line 

(27) arg z = r 

sweeps out in the z plane a sector described by the relation 

(28) cor_i + € ^ arg z < œr + e. 

Such a sector is thus associated with each side of the polygon, 
and the set of these sectors completely fills out the complex 
plane. I t is proposed to consider the sum $(z) within the typical 
sector (28). The extension of the results to the entire plane will 
then be immediate. 
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When z lies on a line (27) it is readily computed that 

| Zv*kec*kz\ = gl'l^rt-'H-^sinH-i'rtlogUI/I.IJ^ 

where c8k = a8k+i^ak* I t follows from this that the relative 
magnitudes of the terms in the sum (1) are ultimately deter
mined by the relative magnitudes of the associated quantities 

asjc cos r + &/<• sin r . 

These, however, are represented geometrically by the respective 
projection of the vectors c8k upon the line (27), and from this 
interpretation it is quickly seen, in virtue of the restriction 
upon the range of r, t ha t 

aSk cos r + Psk sin r < ar\ cos r + /3ri sin r, for any s 7^ r. 

It follows that for z on any line (27), that is, anywhere in the 
sector (28), the form of expression 

zv*ew = zVrleCrlze(z) 

is valid for s^r and any k. The sum $(z) with coefficients of 
the form (16) may, therefore, be expressed as a sum with a re
duced number of terms, that is, 

hr 

(29) $(s) = 2>r*(*)ew, 

and in this expression which is valid for all z in the section (28) 
the coefficients are still of the form (16). The exponents in the 
sum (29) are, however, collinear, their conjugates crh lying on 
the side lr. I t may, therefore, be concluded from Theorem 7 
that the zeros of $(2) within the sector (28) are asymptotically 
confined to one or more strips which are parallel or approach 
parallelism with the normal to the associated side of the polygon, 
A similar conclusion may obviously be drawn in connection 
with the values of z in any other sector. 

THEOREM 8. If in the sum (1) the exponents are any complex 
constants, the zeros of $(2) are confined for \z\>M to a finite 
number of strips each of asymptotically constant width. These 
strips are associated in groups with the exterior normals to the 
sides of the polygon described in the text, and approach parallelism 
with the respective normals. Within each group of strips the dis-
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tribution of zeros may be described as in the previously stated 
theorems, the role of the axis of reals being transferred to the re
spective side of the polygon. 

In closing here this brief and necessarily incomplete discussion 
of the distribution of the zeros of an exponential sum, I wish at 
least to call attention to the related work which has been done 
by Ritt8 on the factorization of such sums and on algebraic 
combinations of exponentials. 

PART II . T H E EXPONENTIAL INTEGRAL 

10. Discussion of the Integral. If in the exponential sum with 
constant coefficients and real exponents as given in form (9), the 
origin is assumed to be a zero of the sum (and this can be made 
so by a simple translation of the plane), then S/=o a3- = 0. With 
this adjustment the sum <ï>(s) can be simply represented in the 
form of an integral as follows. Let the coefficient function <£(/) 
be constant in successive intervals as defined by the relation 

r 

3-0 

for CrSt<cr+i, (r = 0, 1, 2,- • • , n—l). Then it is found directly 
that 

$ 0 0 = z I cj>(t)eztdt. 

The exponential integral of the general type 

(30) *aib(z) = f t(t)eztdt 
J a 

thus includes among its specializations (except for a factor z) 
the exponential sums of the types considered in §2 and §3, and 
hence, of course, also all trigonometric functions which are so 
expressible. Besides these a number of other functions, in
cluding Bessel functions, are amenable to representation in this 
form. 

In turning to a consideration of the integral (30) a restriction 
of the discussion is necessitated by the brevity of available time. 
I t is proposed, therefore, to summarize only certain investiga-
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tions which deal with the integral with finite limits of integra
tion and which impose none but qualitative hypotheses on the 
coefficient function cj>(t) involved. Many investigators have con
sidered either integrals of specialized forms included under the 
type (30), or the integral with infinite limits. I t is not due to a 
want of interest in the results obtained that these subjects are 
omitted from the present discussion. 

Various normalizations of the integral (30) may be attained 
by simple substitutions on the variables involved. Appropriate 
normalizations of this kind make for simplicity in the enuncia
tion of hypotheses and results, and for this reason the following 
ones will be assumed as indicated from point to point in the en
suing discussion. To begin with, the substitution of at+f3 and 
z/a, respectively, for t and z affects a change in the limits of 
integration, and by suitable choice of the constants a, /3, any 
desired finite limits may be attained. I t will be found of par
ticular convenience to normalize the interval thus in some cases 
to (0, 1) and in others to ( — 1, 1). Further, the substitution of 
z-\-c for z affects the introduction of a factor ect into the coef
ficient function ^(2), a n d it follows that whenever ^(<Z)T^0 and 
^ (&)T^0 , a normalization may be made such that \p(a) =\//(b) = l. 
Lastly it will be observed that the trigonometric integrals 

(a) Vs(z) = I ƒ(/) sin zt dt, 
J o 

(b) V0(z) = ! ƒ(/) cos zt dt 
Jo 

are both expressible in the form ML-u^s), the coefficients being 
given respectively by the formulas [l/(2i)]{/(0—ƒ( — $ } , and 
(l/2){/«)+/(-fl}. 

11. The Integral with an Infinity of Real Zeros. The distri
bution of zeros of an exponential sum (9) as determined in § 3 
features conspicuously the existence of a bound upon the nu
merical values of x for which a zero of the sum may occur. 
This fact, it will be recalled, followed from the ultimate domi
nance of the one or the other extreme term of the sum when \x \ 
becomes sufficiently large. The integral (30) is in one sense the 
analogue of an exponential sum with infinitely many exponents 
lying on the range between a and b. Either of these extreme 
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values might in such event be a limit point for the infinite set, 
and if such were the case it would conceivably involve an indefi
nite delay in the accession to dominance of the respective ex
treme term of the sum. The absence of the corresponding bound 
upon the x coordinate of the zeros might then be reasonably ex
pected. Tha t the situation thus conceived does as a matter of 
fact exist is shown by the following example constructed by 
Titchmarsh.9 

Let the constants 0 and v be chosen subject to the conditions 
0 < l / 2 , *>>2, and let a = v/6. The function 

( ( - a)ke~vk, for 6k - a~k < t ^ 6k (jfe = 1, 2, 3, • • • ), 
yp{t) = \ 

\ 0 , elsewhere on (0, 1), 

is integrable (absolutely) in the sense of Lebesgue. But for any 
positive integer n it is found respectively that 

f yp{t)e-«ntdt\ ^ f liKfll dt 

= £ tr'k < e-*n+1 JTe-*1'= e->n+1 Ç | *(*) | dt; 
k=n+l 3=0 J 0 

tha t 

I r1 

^ e_a»(()»-i_a-«+i
) I | ^ | dt 

Jo 

and that 

ƒ' 
Jen 

Jo 

t(t)e-«ntdt = ( - ! ) » ( * - l)e~ 
'en-oT 

Hence it follows that 

| e2"nM>oi(- a-) - (e- 1 ) ( - 1)»| 

< |^w(2-,) + ^(2-i/ô)+«j r | ^ | dtf 

J 0 
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and since the quantity on the right approaches zero with 1/n it 
must be concluded that ^o.iO3) takes when z = —an (and n is 
sufficiently large) the sign of ( —l) n . The existence of at least 
one zero in each corresponding interval — an+l ^ z ^ — an is thus 
established. 

12. Hypotheses of Specific Type. While the example of the 
preceding section shows that the distribution of zeros of an ex
ponential integral may differ sharply from that of an exponen
tial sum, yet in a very wide class of cases they show considerable 
similarity. The coefficient function \p(t) is of course the deter
minative factor of the integral, and hence is always the direct 
subject of the hypothesis. The substance of the present section 
is essentially an abstract of results which are due to Pólya1 and 
is characterized by the fact that the hypotheses are on the 
whole of rather specific character. The results are accordingly 
precise to a considerable degree of detail. 

If the function \p(t) is a step-function with discontinuities 
finite in number and occurring only at rational points of the 
interval, the function will be called exceptional. With such a 
function as coefficient the integral may be directly evaluated 
into the form of an exponential sum of the elementary type 
considered in §2. Hence no essential loss is involved in the re
striction of the theorems to unexceptional functions, and this 
will be tacitly assumed in the absence of statements to the con
trary. 

THEOREM 9. If the function \//(t) is positive and non-decreasing 
on the interval (0, 1), then the zeros of the integral ^o,i(z) are all 
located in the open half-plane x<0. 

By way of proof let the value z=iy be first considered. For 
any value t\ on the interval of integration it is seen that 

iy I ^e^dtl ^ $(h) - ^(0) - I e i y ' # 
Jo I 1 J 0 

But if 0 is defined by the relation 

I eiytd\// = e~iB j eiytd\l/, 
J 0 I «̂ o 

then as h~>1 the relation above becomes 
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| iy&oi(iy) | è lim I {1 — cos (yt — 6)}d\[/. 

Since d\p is never negative, the conclusion l^oifeO | > 0 will be 
expected, and is in fact correct. Its derivation is, however, im
peded somewhat by the necessity of recognizing and disposing 
of the potential effect of the functional dependence of 6 upon 
the variable t\. In conclusion the substitution of z = x+iy in the 
discussion given merely replaces \f/(t) by \f/(t)ext> and since this 
satisfies the hypotheses made for any fixed non-negative x, the 
assertion of the theorem is established. 

The result obtained admits of ready extension into the follow
ing form. 

THEOREM 10. If the coefficient \f/(t) is positive and continuous, 
and if \p'(t) exists (except possibly at a finite number of points) and 

a Ik - — - ^ 0, 

then the zeros of the integral ^o.i(^) &*& confined to the open strip 
of the complex plane given by the relation 

a < x < p. 

(The trivial case \{/(t) =ect+d is excepted.) 

The transformations of the integral into the forms 

^o.i(z) = { e^^e^-^'dt = ez \ e~ai^(\ - t)e^~z)tdt 
*J o * o 

are easily verified. In these forms the coefficients efit\[/(t)t and 
e~ott\f/(l — t), satisfy the hypothesis of Theorem 9, and hence the 
zeros are simultaneously restricted by the relations 

R(z - p) < 0, R(a - z) < 0. 

From this the theorem follows. 

THEOREM 11. If the function f(t) is positive and non-decreasing 
on the interval (0, 1), then the zeros of the trigonometric integrals 
^s(z) and ^c(z) defined in (31) are all real and simple. The zeros 
of tyc(z) occur singly in each of the intervals 

[ ( W - 1 / 2 ) T T , (W + 1 / 2 ) X ] , m^O, 
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while those of ^«(2) occur (except for z = 0) singly in each of the 
intervals [tnw, (m+l)w], w ^ O , — 1 . 

The facts of this theorem may be established by suitable pas
sages from finite to corresponding infinite sums as is indicated in 
the following. The trigonometric sum 

*.(*) = — £ ƒ (-) *»"* sin (-z) 
n j=0 \n/ \n / 

has, for each value of n, coefficients which are positive and in
creasing. Its zeros, therefore, by Theorem 2, are real, and alter
nate with those of the corresponding sum of cosines. From this 
it may be concluded, with suitable reasoning as n-^<x>, that the 
zeros of the integrals ^fs(z) and ^c(z) are real, and that a multiple 
zero of the one would necessarily be also a zero of the other. 
Since in this latter event the integral 

¥,(») + *¥.(*) = f f(t)eiztdt 
Jo 

would have a real zero, contrary to Theorem 9, the simplicity 
of the zeros must be granted. 

The more precise location of the zeros as stated in the theorem 
is derived by Pólya from the expansion 

(a» i « - no cm - ± <- i > w f t w r j - + - i - n , 
z s i n z M->OO ( z J==i JTT Lz—jir z+jirj) 

which may be established by methods familiar in the theory of 
functions of a complex variable. Each coefficient on the right of 
this expansion is positive, for 

( - l ^ t f . O V ) = ( - 1) '+ 1 f f(t) smjirtdt, 
Jo 

while the integral represents a sum of areas, alternating in sign, 
non-decreasing in numerical magnitude, with the final one posi
tive. Because of this the rational function within the brace in 
(32) is found by elementary means to have one zero in each of 
the intervals (— 00, —mr), (rnr, 00), [mw, (w+l)7r] , m=—ny 

• • • , — 1, 1, 2, • • • , n — 1. A suitable passage to the limit as 
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n—>oo establishes the theorem. An analogous discussion for 
SPcOs) is, of course, possible. 

If the hypothesis of Theorem 11 is extended to include the 
assumptions that limt^of(t) = 0, and that f(t) is nowhere con
cave, a refinement of the theorem is possible which determines 
the specific half of each of the intervals given in which the zero 
is located. The method of proof is similar to that outlined above, 
a remark which applies also to the following theorem. 

THEOREM 12. If the function f (t) is positive, decreasing, and 
nowhere convex downward, and if f'(f) exists and is not an excep
tional function, then the zeros of ^c(z) are all real and there is just 
one in each of the intervals \mir, (W + 1)7T] ,WT^0, — 1 . 

As examples of integrals covered by the theorems of this sec
tion one has the familiar functions 

r1 2 
Jo(z) = I cos ztdt, 

Jo TT(I - t*yi* 

f1 2/ 
Ji(z) = I sin ztdt. 

Jo *r(l - Z2)1'2 

13. Hypotheses of Intermediate Type. Less specific than those 
of the preceding section are the hypotheses and results to which 
the attention will now be turned. The material has been taken 
essentially from a memoir by Miss M. L. Cartwright10 under date 
of the present year. The two theorems to be given first, how
ever, are attributed by her to Hardy. 

As a preliminary it is perhaps desirable to note at this point 
the following relations which have been proved by Titchmarsh,9 

namely that with any coefficient function \{/(t) which is inte
g r a t e , 

(33) l ^ 2 ) l { ^ o t r i - N » ) , f o r a n y 0 > 0 . 

These assertions may be established by a direct analysis of the 
integral involved. 

THEOREM 13. If the function \[/(t) is itself an integral, if it is 
continuous at t = l and t= — 1, and if \(/(l) = ^ ( —1) = 1, then the 
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zeros, zm, of the integral SP-i.iOs) are given by the asymptotic for
mula 

nnri. 

The proof is immediate. An integration by parts yields the 
equality 

fj\t)e g ^ - i fl(2) = ez - e~z — I \p'(t)eztdt. 

Of this the right hand member is of the form 

* { 1 + e(a)} - r - { l + €(«)}, 

because of the first of the relations (33). Tha t the zeros are 
located as stated in the theorem may be concluded then from 
the deductions of §2 and §4. 

THEOREM 14. If the function \f/(t) is of bounded variation, is 
continuous at t = l and t=— 1, and yp(l) — yp{ — 1) = 1, then the 
zeros of ^-it\(z) all lie within a strip of the complex plane given by 
a relation \x \ <K. 

The proof of this theorem has been constructed on the follow
ing lines. When x>0, an integration yields the evaluation 

eztd\p — I eztdyp, 
- I Ji-$ 

in which the integrals on the right are numerically less, respec
tively, than Hexa~8), and exrj(ô), with H some constant and 
7)(ô) the maximum of \yp(t2)-yp(h) | for 1 - ô<h<t2^l. Hence 

| 2^_i,i0) | ^ ex{ 1 — e~2x — He~hx — rj(d)} . 

However, the right member of this inequality is assuredly posi
tive if S is chosen sufficiently small (because of the continuity of 
x[/(t) at t = 1 this makes rj(ô) small), and if K is then chosen suffi
ciently large and x >K. I t evidently follows that for such values 
of z the integral can have no zero, and a similar discussion estab
lishes the fact for x < — K. 

The hypotheses of Theorem 14 are seen from the conclu
sions thus drawn to be sufficient to assure for the exponential 
integral a distribution of zeros resembling in at least one salient 
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feature the distribution associated with an exponential sum. By 
the following theorem this similarity is shown to extend beyond 
the mere restriction of the zeros to a strip of the plane even to 
the density of zeros within that strip. 

THEOREM 15. Under the hypotheses of the preceding theorem 
the number, n(r), of zeros of the integral ty-ifi(z) which are in abso
lute value less than r satisfies the relation 

2r 
n(r) = — + 0(1) . 

I t is readily found that this relation is included in (7) which 
restricts the zeros of exponential sums. 

The proofs of Theorem IS, and of the following Theorem 16, 
are less simple than any which have hitherto been outlined. 
They are based upon facts and relations familiar in the theory of 
entire functions and involve considerable detail. The author of 
the theorem10 has deduced also a formula for the value of the 
quantity 

f'n(s) 
I ds. 

JQ S 

THEOREM 16. If the function ypit) is continuous, with modulus 
of continuity co(ô) on the interval (—1, 1), andif^/(\) = ^ ( — 1) = 1, 
then the zeros of the integral ty-i,i(z) all lie within a region 

| x\ < K\ Z\ co 

with a suitably chosen constant K> and 

n(r) = — + O(rco(—YV 

It will be recalled that the modulus of continuity co(S) is de
fined as the maximum value of \i/(h) —^(h) | for t2, h on ( — 1, 1) 
and | /2~^i |<ô . As ô—»0, co(ô) =0(1), and in fact if the function 
satisfies a L ipsch i t z cond i t ion |^fe) —tih) | <A \h — t\ | a , 

T^T 
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0 <a ^ 1, then w(5) = 0(ô a). As in the case of the preceding theo
rem an evaluation of the quantity 

Jo s 

is also deducible. Moreover, it can be shown that the require
ment of continuity over the entire interval ( — 1, 1) can, with 
suitable modification in the results, be replaced by hypotheses 
demanding continuity only near the end points. 

14. The Integral with Most General Coefficient. The exponen
tial integral of greatest generality results from the admission of 
any function which is absolutely integrable to the role of the 
coefficient ip(f). As will be indicated below even this minimum 
of hypotheses is not unproductive of significant results. 

The function St'o.iO2) is analytic over the entire plane, and as 
such its zeros may be enumerated in the order of increasing 
absolute magnitude, thus, zm = rmeidm. The following theorems 
involve a qualitative characterization of the density with which 
these zeros are distributed in the complex plane. 

THEOREM 17. If the coefficient function \p(t) is absolutely in
tegrable, the zeros zm of the integral ^o,i(z) are distributed so that 
the series 

i I Z I 1 + « m—l I « m I 

converges for every €>0 , and diverges for e = 0. 

As an entire function the integral ^o.iO3) is of order at most 
unity, as may be seen from the evident relation 

|*o.i(*)| S e |f | f \m\dt. 
Jo 

Inasmuch as this order a t least equals the exponent of conver
gence, the statement of the theorem in so far as it concerns the 
convergence for € > 0 is established. The divergence for e = 0 is 
not so immediately verified. Independent proofs of it have, how
ever, been given by both Pólya1 and Titchmarsh.9 The method 
employed by the latter may be indicated briefly as follows. 

file:///m/dt
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Convergence of the series for e = 0 would imply the absolute 
convergence of the canonical product 

POO -*oi(o)fi f 1 - - ) -

In such event, however, a product of this type is known to 
satisfy the relation 

with any positive constant rç. Since ^0,1(2) is expressible in the 

form ^0,1(2) = e^a+i^)zP{z)i its order being unity, it would follow 

that 

| *o . i (± x)\ = 0(*<±«+'>l*'), 

and this contradicts the second of the relations (33). 

THEOREM 18. If the function \f/(t) is absolutely integrable, then 
the zeros of the integral ^0,1(2) satisfy the relations 

r 
(a) n{r) ~ — > 

n 
A cos 6m 

(b) 2^f 1 r converges absolutely, 

(c) 23 -j p converges conditionally. 
m = l I 2 m I 

These results have all been obtained by Titchmarsh9 by the 
use of relations in the theory of entire functions. The result 
(a) evidently implies the assertions of Theorem 17, and is in 
fact more precise. The result (b) in conjunction with (a) indi
cates that in general | co s0 w | is small when m is large. 
The example of §11 would show, however, that a relation 
limm^oo cos 0W = O is not in general valid. The result (c), which 
is obvious in the case of a real coefficient function ^(/) , since 
the zeros present themselves then in conjugate pairs, is not 
easily established in the general case. The author of the result9 

has, however, succeeded in explicitly summing both the series 
(b) and (c) in terms of the values taken by S^o.iO2) and its de
rivative at 2 = 0. 
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