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ON A PROBLEM OF N. ARONSZAJN AND 
AN AXIOM OF R. L. MOORE* 

BY LEO ZIPPINf 

In an interesting paper N. AronszajnJ raises the question 
whether every space belonging to a class of topologie spaces which 
he introduces! is necessarily an absolute Gô-set; that is, one 
which in every metric space M containing it may be expressed 
as the product of a countable set of sets open in M. In this, the 
first part of the paper gives an affirmative answer. The class of 
spaces ^ is given, in effect, by the following axiom: a topologie 
space R belongs to the class % if and only if there exists an in­
finite sequence of classes ÏÏRn(R) for w = l, 2, • • • , such that 

(1) for every natural number n, R is generated by UR
n(R); 

(2) with every sequence of sets { Un], where Un ^ Un+i, there 
is associated a point p of space such that >̂ = H/Li U% and this 
sequence converges to p. 

The necessary definitions are these: a class 11^(2?) is any class 
of point sets of R which are open in R and whose sum covers R. 
Such a class generates R if, further, given any point p of R and 
any open set U containing p, then there is an element V of 
UR(R) which contains p and is contained in £/. A set of sets 
converges to a point if every open set containing the point con­
tains all but a finite number of the given sets. 

We suppose then that R is a space as defined above and is a 
subset of a metrizable space M. Then whatever metric be as­
sociated with M (preserving its topology) this is induced on R 
as a subspace (preserving its topology) and we may speak of the 
diameters of the elements of any of the generating classes. Let 
U be an element of one of these classes whose diameter is finite 

* Presented to the Society ̂ December 31, 1930. 
f National Research Fellow. 
t N. Aronszajn, Vber die BogenverknUpfungin topologischen Rautnen, Fun-

damenta Mathematicae, vol. 15 (1930), pp. 228-241.Compare the first para­
graph of page 229. 

§ Part of this paper is concerned with the relation of these spaces to spaces 
defined by R. L. Moore considerably earlier. 
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(the restriction is Convenient) and suppose its diameter, e, not 
zero. For each point k of U there is in M a spherical neighbor­
hood of k of diameter a t most e/3 which contains no point of R 
not in Z7, since U is open in R. The sum of all such spherical 
neighborhoods for every point k of U gives a set U* which is 
open in M, of diameter less than 2e, and such that U = R- Z7*. 
If e is zero, and V reduces to a point k of R, we shall suppose V 
indefinitely repeated and associate with it an infinite set of 
spherical neighborhoods Z7* of diameters converging to zero such 
th£t RU*=k. We shall call U* the extended element of that 
class of which U is an element. If U) above, is vacuous, it is not 
relevant to the definition of limit points in R} and is ignored. 

Let Fn,m be the set of all points of M which belong to no ex­
tended element of the nth generating class which is of diameter less 
than 1/m. This is seen to be closed in M since the extended ele­
ments are open there. Then 

00 00 

F = 2^ / \Fn.m 
n = l m = l 

is the sum of a countable set of closed sets, and G = M—F is a 
Gô-subset relative to M. If, now, x is any point of R and m and n 
are any preassigned natural numbers, let U* be a spherical neigh­
borhood of x in M of radius less than l / (4w) . Since Ux—R- U? is 
open in R there is an element V of the wth generating class con­
taining x and contained in Ux, and therefore of diameter less than 
l/(2m). Consequently this has a corresponding extended element 
U* of diameter less than 1/m, and U* contains x which cannot, 
therefore, belong to Fn,m. Since this is true for every point of -K, 
and every n and w, R must belong to G. Suppose, on the other 
hand, that y is a point of G; then it belongs to no Fn>m and is 
contained in an extended element of any preassigned generating 
class which is, moreover, of diameter less than any preassigned 
positive number, not zero. Then y belongs to an extended ele­
ment U* which is of diameter less than 1. There is a spherical 
neighborhood U* of y in M such that £/„* c Uf. Let 1/nti be 
less than half the radius of U*i y belongs to an extended ele­
ment £/2* of the second generating class which is of diameter less 
than 1/wi, and Z72* 3 £/*. Continuing inductively, we see that 
there exists a sequence of extended elements, Uf, Ujf, • • • , 
Z7n*, • • • , each containing y} of diameters converging to zero, 

file:///Fn.m
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each a subset of its predecessor, and each an extended ele­
ment of the generating class of corresponding number. But 
Un=R' U£oR- 1/^+1= Un+i* Then, by the second condition 
of the axiom, the set of elements Un must converge to a point y' 
of R, and this must be identical with y. Then every point of G 
is a point of R, and it is shown that R is a G§-subset of M. 

We shall prove that in metrizable topologie spaces the axiom 
of N. Aronszajn is equivalent to the following earlier axiom of R. 
L. Moore, f For every natural number n, Gi, G2, • • • , Gn, • • • 
is a collection of regions such that (1) for every n, Gn covers 
space, (2) if R is a region and p and q are points of R, there is an 
integer d such that if n^d and Rn is a region of Gn containing 
p, then RnKiR — q, (3) if 2?i, JR2, • • • is a set of regions such that 
for each n, Ri, R^ • • • , Rn have a common point, then there is 
a point p such that p c n,-"^*. 

Let R be a space satisfying the axiom of Aronszajn and, 
moreover, metric. We shall define a sequence of generating 
classes, Gi, G2, • • • , Gw, • • • , composed of elements of the cor­
responding index. I t is to be borne in mind that since every 
spherical neighborhood Up of a point p of R is open in Ry there 
exists in whatever generating class we wish an element contain­
ing p and contained in Up. Let Gi be the set of all elements of 
TL£(R) of diameter less than 1. For each point p of R there is 
some element U} of Gi which contains it. There is a lower limit 
€p, distinct from zero, to the distances from the point p to the 
points of R—Up

l. With p we associate all those elements of 
IIi22(jR) which contain p and whose diameter is less than ep/4. 
The set of all such elements, corresponding to each point of R 
for some element of Gi arbitrarily associated with it, as above, 
is the set G2. Analogously, for every n we form Gn from among 
the elements of ILR

n(R), with respect to the elements of Gn-i. 
Tha t each Gn is a generating class for R, and that in their totality 
they form a system equivalent to the original (define the same 
topologie space and have the properties of the original system of 
elements) is clear. Every element of Gw, for every n, we shall 

t With this axiom and the consequences Moore deduced from it, Aronszajn 
appears not to be acquainted. Abstract, this Bulletin, vol. 33 (1927), p. 141. 
A slightly different version of this axiom was presented by R. L. Moore at the 
Boulder Colloquium Lectures in August of 1929, but the two are readily shown 
to be equivalent. 
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call a region (which is an undefined concept in Moore's axiom) 
and these only shall be regions. 

The first condition of Moore's axiom is obviously satisfied by 
this sequence of regions, and the second by virtue of the fact 
that a region of Gn is of diameter at most 1/4n_1. Suppose now 
that we have a set of regions Pi, R2, • • * , satisfying the require­
ments of the third condition of Moore's axiom. Since P2 is a 
region of G2, by the construction of G2, there exists a point p of 
R2 and a region Up1 of Gi such that* 

ô(R2)<ep/4=p(p)R-U^, 

and ô ( Up1 ) à ep. I t is seen that p (R2f R — Up1 ) ^ 3 ep/4. Let X2 be 
any region of G2 which contains R$ and let us suppose that K2 

is not contained in Up1. Since K2 z>Rs D Rz'R27
é01 and also 

K2(R- Up1) 5*0, it follows that 0(i£2)e3e„/4. Then there is a 
point 5 of i£2 and a region C/g1 of Gi containing K2} such that 
ô(i£2)<€<?/4, and it follows that 8(U})>3eq. Since the set of 
diameters of regions of G\ is limited above, this process of select­
ing successive regions of G\ must terminate with a region P x of 
Gi with the following properties: there is an integer n% such 
that if m^niy P i 3 Rm\ and further if Q2 is any region of G2 con­
taining P m , then Ç 2 c P i . I t is possible, inductively, to deter­
mine a set of regions, Pi , P2 , • • • , Pw , • • • , and a set of in­
tegers ni, #2, • • • , s u c n t n a t (1) -P» *s a region of Gn, (2) 
P w D P n + i , (3) if fn^njc, then RmcPk. From the first two of 
these properties it follows (by the second condition of Aron­
szajn) that the regions (elements) Pn converge to a point p of P . 
Then for every region P^>p, there is an integer k such that if 
m^kj PoPm. By the third property above, PDRJ where 
j^nm. But since P r P j ^ O , where i = l, 2, • • • , j , it follows that 
P contains a point of Rif i = 1, 2, 3, • • • , and p c i^ . Then we 
have shown that R satisfies the axiom of Moore. 

We may define a class of topologie spaces, in a sense the most 
general, in which an Aronszajn space is necessarily a Moore 
space, by adjoining to conditions (1) and (2) of Moore's axiom 
a third to the effect that to a set of regions as described in 
Moore's axiom may be associated a set Pi , P2 , • • • , with prop­
erties as above. We have seen that all metric spaces are in-

* Read: the diameter of R2 less than lower limit of distances of p to points 
of R-UPK 
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eluded among these and it may be shown that this class com­
prises all Moore spaces, and these include examples of non-
metric spaces. And it is true, further, that a space of Moore is a 
space of Aronszajn always. But the author's proofs of these 
statements he finds to be implicit in various arguments which 
R. L. Moore has already used (in the pages of his work to ap­
pear, in the near future, in the regular Colloquium Series) and 
in consequence no proof will be given. 

The following example of a space satisfying the axiom of 
Aronszajn (given by him in his paper, page 239) will be used to 
show that his axiom is more general than Moore's. Let T be the 
set of all ordinal numbers of the first and second class, where for 
» = 1, 2, 3, • • • , the nth. neighborhood of a, Un(a)=a if a is 
an isolated ordinal, while if a is a limit-ordinal Un(a) is a set of 
numbers z such that bn<z^a, wher limn̂ oo(&n) — a. Now, how­
ever region be defined or this space in accordance with Moore's 
axiom, for every limit number p there must occur in one of the 
covering sets a region Rp which contains none of the succes­
sors of p} and Rp must contain infinitely many of the predeces­
sors of p\ in particular, one other number q Then we may 
associate with p a number np such that every region of the npth 
covering set which contains p is contained in Rp, and contains 
therefore no successor to p. But the set of limit-numbers being 
uncountable, to uncountably many (in particular to a count­
able, infinite subset) must correspond the same integer N. Then 
there is an infinite set (xn) of these numbers, with a limit number 
x which succeeds all of them. A region of the ( iV+l) th covering 
set containing x must contain at least one point of (xn) con­
tradicting the choice of N. From the self-compactness of the 
space T, the third condition of Moore's axiom is necessarily ful­
filled; but the question whether the fundamental difference be­
tween the axioms is constituted by the "uniformity of regu­
larity" which inheres in Moore's second condition (contradicted 
in the space T) is not settled. 

The relation between the axioms is the more challenging since 
they were fashioned with the same end in view and Moore and 
Aronszajn drew from them, for their respective spaces, the same 
impressive consequence. 
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