ON THE WEDDERBURN NORM CONDITION FOR CYCLIC ALGEBRAS*

BY A. A. ALBERT

1. Introduction. Let F be any non-modular field, i a root of a cyclic equation in F of degree n and with roots $\theta^{r}(i)$. Suppose that A is a cyclic algebra with basis
where

$$
i^{r} y^{s}, \quad(r, s=0,1, \cdots, n-1)
$$

$$
y^{r} i=\theta^{r}(i) y^{r}, y^{n}=\gamma \operatorname{in} F .
$$

J. H. M. Wedderburn has proved \dagger that A is a division algebra if γ^{r} is not the norm, $N(a)$, of any a in $F(i)$ for every positive integer r less than n. It has never been shown, however, that this condition is a necessary one; but the problem of finding complete necessary and sufficient conditions has been reduced to the case n a power of a single prime. \ddagger

In the present paper cyclic algebras of order sixteen with the corresponding cyclic quartic in its canonical form§

$$
\phi(\omega) \equiv \dot{\omega}^{4}+2 \nu\left(1+\Delta^{2}\right) \omega^{2}+\nu^{2} \Delta^{2}\left(1+\Delta^{2}\right)=0
$$

such that ν and Δ are in F, and $\tau=1+\Delta^{2}$ is not the square of any quantity of F, are considered. The norm $N(a)$ of a polynomial in i is a rather complicated quartic form in four variables, yet we can secure the result that $\gamma^{2}=N(a)$ if and only if $\gamma=\alpha^{2}-\beta^{2} \tau$ for α and β in F, a curious property of cyclic quartic fields. When the above equation is satisfied the algebra A is expressible as a direct product of two generalized quaternion algebras. Necessary and sufficient conditions are secured that our algebras A of order sixteen be division algebras, and it is shown that for the particularly interesting case where F is the field of all rational numbers the Wedderburn condition is necessary as well as sufficient.

[^0]2. The Basic Theorem. Let $F(x)$ be a cyclic quartic field. Then it is known (loc. cit.) that $F(x)=F(i)$, where i satisfies the equation
\[

$$
\begin{equation*}
\phi(\omega) \equiv \omega^{4}+2 \nu \tau \omega^{2}+\nu^{2} \Delta^{2} \tau=0 \tag{1}
\end{equation*}
$$

\]

with $\tau=1+\Delta^{2}$ not the square of any quantity of F and

$$
\begin{equation*}
\nu \neq 0, \tau, \Delta \neq 0 \tag{2}
\end{equation*}
$$

all in F. Moreover if we define u by the equation

$$
\begin{equation*}
i^{2}=\nu(u-\tau) \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
u^{2}=\tau, \quad \theta(i)=\frac{i}{\Delta}(u+1) \tag{4}
\end{equation*}
$$

is the polynomial whose iteratives $i=\theta^{0}(i)=\theta^{4}(i), \theta(i), \theta^{2}(i)=-i$, $\theta^{3}(i)=\theta(-i)=-\theta(i)$ give the four roots in $F(i)$ of $\phi(\omega)=0$. Every quantity of $F(i)$ is expressible in the form

$$
\begin{equation*}
a=a_{1}+a_{2} i, \quad\left(a_{1} \text { and } a_{2} \text { in } F(u)\right) \tag{5}
\end{equation*}
$$

and $a=0$ if and only if $a_{1}=a_{2}=0$. A quantity .

$$
\begin{equation*}
a_{1}=\alpha_{1}+\alpha_{2} u, \quad\left(\alpha_{1} \text { and } \alpha_{2} \text { in } F\right) \tag{6}
\end{equation*}
$$

is zero if and only if $\alpha_{1}=\alpha_{2}=0$; and similarly

$$
\begin{equation*}
\alpha_{1}{ }^{2}-\alpha_{2}{ }^{2} \tau \tag{7}
\end{equation*}
$$

vanishes if and only if $\alpha_{1}=\alpha_{2}=0$ by our restriction on τ.
We shall use repeatedly the following simple lemma.
Lemma 1. Every product of a finite number of scalars of the forms

$$
\begin{array}{ll}
\lambda^{2}-\mu^{2} \tau \\
\left(\lambda^{2}-\mu^{2} \tau\right)^{-1}, & \lambda^{2}-\mu^{2} \tau \neq 0
\end{array}
$$

with λ and μ in F, is expressible in the form (8) for λ and μ in F.
The truth of this is evident since

$$
\left(\lambda_{1}+\mu_{1} u\right)\left(\lambda_{2}+\mu_{2} u\right)=\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2} \tau\right)+\left(\lambda_{1} \mu_{2}+\lambda_{2} \mu_{1}\right) u
$$

and hence
(9) $\left(\lambda_{1}{ }^{2}-\mu_{1}{ }^{2} \tau\right)\left(\lambda_{2}{ }^{2}-\mu_{2}{ }^{2} \tau\right)=\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2} \tau\right)^{2}-\left(\lambda_{1} \mu_{2}+\lambda_{2} \mu_{1}\right)^{2} \tau$;
while if $\epsilon=\lambda^{2}-\mu^{2} \tau \neq 0$, then

$$
\begin{equation*}
\epsilon^{-1}=\epsilon^{-2} \epsilon=\epsilon^{-2}\left(\lambda^{2}-\mu^{2} \tau\right)=\left(\lambda \epsilon^{-1}\right)^{2}-\left(\mu \epsilon^{-1}\right)^{2} \tau \tag{10}
\end{equation*}
$$

Let us now assume that $\gamma \neq 0$ is a scalar in F, such that $\gamma^{2}=N(a)$, where a is in the cyclic field $F(i)$. We may write $a^{(r)}=a\left[\theta^{r}(i)\right], \quad(r=0,1, \cdots)$, whence $a^{\prime \prime}=a(-i)$. Then u^{\prime} $=-u$; and if a_{1} is in $F(u)$ so that a_{1} has the form $a_{1}=\alpha_{1}+\alpha_{2} u$, we have $a_{1}=a_{1}^{\prime \prime}$ and

$$
\begin{equation*}
N\left(a_{1}\right)=a_{1} a_{1}^{\prime} a_{1}^{\prime \prime} a_{1}^{\prime \prime \prime}=\left(a_{1} a_{1}^{\prime}\right)^{2}=\left(\alpha_{1}^{2}-\alpha_{2}^{2} \tau\right)^{2} . \tag{11}
\end{equation*}
$$

Let us write $\gamma^{2}=N(a)$, where

$$
\begin{equation*}
a=a_{2}+a_{3} i, \quad\left(a_{2} \text { and } a_{3} \text { in } F(u)\right) \tag{12}
\end{equation*}
$$

We shall first consider the case $a_{3}=0$. Then $a=a_{2}=\alpha_{3}+\alpha_{4} u$, and

$$
\begin{equation*}
\gamma^{2}=\left(\alpha_{3}^{2}-\alpha_{4}^{2} \tau\right)^{2} \tag{13}
\end{equation*}
$$

This equation in a field F implies that

$$
\begin{equation*}
\gamma= \pm\left(\alpha_{3}^{2}-\alpha_{4}^{2} \tau\right) \tag{14}
\end{equation*}
$$

If $\gamma=\alpha_{3}{ }^{2}-\alpha_{4}{ }^{2} \tau$, we have expressed γ in the form

$$
\begin{equation*}
\gamma=\alpha^{2}-\beta^{2} \tau \tag{15}
\end{equation*}
$$

with α and β in F, the result desired. Since $\tau=1+\Delta^{2}$, we have

$$
\begin{equation*}
-1=\Delta^{2}-\tau \tag{16}
\end{equation*}
$$

Hence if $\gamma=-\left(\alpha_{3}{ }^{2}-\alpha_{4}{ }^{2} \tau\right)$, then $\gamma=\left(\Delta^{2}-\tau\right)\left(\alpha_{3}^{2}-\alpha_{4}{ }^{2} \tau\right)$; and, by Lemma 1, γ has again the desired form (15).

Next let $a_{3} \neq 0$. Then, if $a_{3}=\lambda_{3}+\lambda_{4} u, a_{1}=a_{3}{ }^{-1} a_{2}$, we have

$$
\begin{equation*}
N(a)=N\left[a_{3}\left(a_{1}+i\right)\right]=\left(\lambda_{3}{ }^{2}-\lambda_{4}{ }^{2} \tau\right)^{2} N\left(a_{1}+i\right) . \tag{17}
\end{equation*}
$$

Let $\delta=\gamma\left(\lambda_{3}{ }^{2}-\lambda_{4}{ }^{2} \tau\right)^{-1}$. Then

$$
\begin{equation*}
\delta^{2}=\gamma^{2}\left(\lambda_{3}{ }^{2}-\lambda_{4}{ }^{2} \tau\right)^{-2}=N\left(a_{1}+i\right) \tag{18}
\end{equation*}
$$

But if $b=a_{1}+i$, then $\delta^{2}=\left(b b^{\prime \prime}\right)\left(b b^{\prime \prime}\right)^{\prime}$ so that if $w=\delta\left[\left(b b^{\prime \prime}\right)^{\prime}\right]^{-1}$, then $\delta=\delta^{\prime}=w^{\prime} b b^{\prime \prime}$. It follows that $\delta^{2}=w w^{\prime} N(b)=w w^{\prime} \delta^{2}$. Hence

$$
\begin{equation*}
w w^{\prime}=1, w=b b^{\prime \prime} \delta^{-1}, b b^{\prime \prime}=\delta w, \tag{19}
\end{equation*}
$$

where $w=b b^{\prime \prime} \delta^{-1}=\xi_{1}+\xi_{2} u$ is in $F(u)$. If $a_{1}=\alpha_{1}+\alpha_{2} u, \alpha_{1}$ and α_{2} in F, we have, by (3),

$$
\begin{aligned}
b b^{\prime \prime} & =a_{1}{ }^{2}-i^{2}=\alpha_{1}{ }^{2}+\alpha_{2}{ }^{2} \tau+2 \alpha_{1} \alpha_{2} u-\nu(u-\tau) \\
& =\left(\alpha_{1}{ }^{2}+\alpha_{2}{ }^{2} \tau+\nu \tau\right)+\left(2 \alpha_{1} \alpha_{2}-\nu\right) u
\end{aligned}
$$

From the linear independence of 1 and u this implies

$$
\begin{equation*}
\alpha_{1}^{2}+\alpha_{2}^{2} \tau+\nu \tau=\delta \xi_{1}, 2 \alpha_{1} \alpha_{2}-\nu=\delta \xi_{2} \tag{20}
\end{equation*}
$$

We obtain $2 \alpha_{1} \alpha_{2} \tau-\nu \tau=\delta \xi_{2} \tau$, and by addition

$$
\begin{equation*}
\alpha_{1}{ }^{2}+2 \alpha_{1} \alpha_{2} \tau+\alpha_{2}{ }^{2} \tau=\delta\left(\xi_{1}+\xi_{2} \tau\right) . \tag{21}
\end{equation*}
$$

Since $1-\tau=-\Delta^{2}$, if we complete the square in (21), it becomes

$$
\begin{align*}
\left(\alpha_{1}+\alpha_{2} \tau\right)^{2}+\alpha_{2}^{2}\left(\tau-\tau^{2}\right) & =\left(\alpha_{1}+\alpha_{2} \tau\right)^{2}-\left(\alpha_{2} \Delta\right)^{2} \tau \tag{22}\\
& =\delta\left(\xi_{1}+\xi_{2} \tau\right)
\end{align*}
$$

Consider now the equation $w w^{\prime}=1$, or

$$
\begin{equation*}
\xi_{1}{ }^{2}-\xi_{2}{ }^{2} \tau=1, \xi_{2}{ }^{2} \tau=\left(\xi_{1}+1\right)\left(\xi_{1}-1\right) \tag{23}
\end{equation*}
$$

Let $\xi_{1}-1=2 \pi, \xi_{1}+1=2 \sigma$. Then

$$
\begin{equation*}
4 \sigma \pi=\xi_{2}{ }^{2} \tau \tag{24}
\end{equation*}
$$

Suppose first that $\xi_{1}+1=0$ so that $\sigma=0$ and $\xi_{2}=0$. Then $\xi_{1}+\xi_{2} \tau=\xi_{1}=-1=\Delta_{1}{ }^{2}-\tau$. Hence in this case we have

$$
\begin{equation*}
\xi_{1}+\xi_{2} \tau=\lambda_{5}{ }^{2}-\lambda_{6}{ }^{2} \tau, \quad\left(\lambda_{5} \text { and } \lambda_{6} \text { in } F\right) \tag{25}
\end{equation*}
$$

Next let $\xi_{1}+1 \neq 0$, so that $\sigma \neq 0$; and let us define ϵ by the equation

$$
\begin{equation*}
2 \sigma \epsilon=\xi_{2} \tag{26}
\end{equation*}
$$

Then (24) gives $4 \sigma \pi=4 \sigma^{2} \epsilon^{2} \tau$, whence

$$
\begin{equation*}
\pi=\epsilon^{2} \sigma \tau \tag{27}
\end{equation*}
$$

But $2(\sigma-\pi)=\xi_{1}+1-\left(\xi_{1}-1\right)=2$, whence

$$
\begin{equation*}
1=\sigma-\pi=\sigma-\epsilon^{2} \sigma \tau=\sigma\left(1-\epsilon^{2} \tau\right) \tag{28}
\end{equation*}
$$

Since $1-\epsilon^{2} \tau \neq 0$, using Lemma 1 , we have

$$
\begin{equation*}
\sigma=\beta_{1}^{2}-\beta_{2}^{2} \tau, \quad\left(\beta_{1} \text { and } \beta_{2} \text { in } F\right) \tag{29}
\end{equation*}
$$

so that $\xi_{1}=\pi+\sigma=\sigma\left(1+\epsilon^{2} \tau\right)$, and

$$
\begin{align*}
\xi_{1}+\xi_{2} \tau & =\sigma\left[\left(1+\epsilon^{2} \tau\right)+2 \epsilon \tau\right]=\sigma\left[(1+\epsilon \tau)^{2}-(\epsilon \Delta)^{2} \tau\right] \\
& =\left(\beta_{1}{ }^{2}-\beta_{2}{ }^{2} \tau\right)\left[(1+\epsilon \tau)^{2}-(\epsilon \Delta)^{2} \tau\right]=\lambda_{5}{ }^{2}-\lambda_{6}{ }^{2} \tau \tag{30}
\end{align*}
$$

for λ_{5} and λ_{6} in F, by Lemma 1. Hence in all cases (25) is satisfied.

If we now put $\beta_{3}=\alpha_{1}+\tau \alpha_{2}, \beta_{4}=\Delta \alpha_{2}$, (22) becomes

$$
\begin{equation*}
\delta\left(\lambda_{5}{ }^{2}-\lambda_{6}{ }^{2} \tau\right)=\beta_{3}{ }^{2}-\beta_{4}{ }^{2} \tau . \tag{31}
\end{equation*}
$$

Suppose first that $\beta_{3}{ }^{2}-\beta_{4}{ }^{2} \tau=0$, whence $\beta_{3}=\beta_{4}=0$. Then our definitions above of β_{3} and β_{4} evidently give $\alpha_{1}=\alpha_{2}=0$, and (20) take the form $\nu \tau=\delta \xi_{1},-\nu=\delta \xi_{2}$. Squaring each side of both these, we may write $\nu^{2} \tau^{2}=\delta^{2} \xi_{1}^{2}, \nu^{2} \tau=\delta^{2} \xi_{2}^{2} \tau$, whence, by subtraction and the use of the relations $1=\xi_{1}{ }^{2}-\xi_{2}^{2} \tau, \quad \tau=1+\Delta^{2}$, we obtain

$$
\begin{equation*}
\nu^{2} \tau^{2}-\nu^{2} \tau=\tau\left(\nu^{2} \Delta^{2}\right)=\delta^{2}\left(\xi_{1}{ }^{2}-\xi_{2}{ }^{2} \tau\right)=\delta^{2} \tag{32}
\end{equation*}
$$

Then $\tau=\left(\delta \nu^{-1} \Delta^{-1}\right)^{2}$, which is a contradiction since τ is not the square of any quantity of F. Hence $\beta_{3}{ }^{2}-\beta_{4}{ }^{2} \tau \neq 0$. Thus $\lambda_{5}{ }^{2}-\lambda_{6}{ }^{2} \tau \neq 0$ has an inverse in F which has the form $\lambda_{\tau}{ }^{2}-\lambda_{8}{ }^{2} \tau$ by Lemma 1, and we may write

$$
\begin{align*}
\gamma & =\delta\left(\lambda_{3}{ }^{2}-\lambda_{4}{ }^{2} \tau\right)=\left(\lambda_{3}{ }^{2}-\lambda_{4}{ }^{2} \tau\right)\left(\lambda_{7}{ }^{2}-\lambda_{8}{ }^{2} \tau\right)\left(\beta_{3}{ }^{2}-\beta_{4}{ }^{2} \tau\right) \tag{33}\\
& =\left(\alpha^{2}-\beta^{2} \tau\right)
\end{align*}
$$

again using Lemma 1. We have proved in all cases the first part of the following statement.

Theorem 1. A scalar $\gamma \neq 0$ in F has the property

$$
\begin{equation*}
\gamma^{2}=N(a) \tag{34}
\end{equation*}
$$

for a in $F(i)$, a cyclic quartic field, if and only if

$$
\begin{equation*}
\gamma=\alpha^{2}-\beta^{2} \tau, \quad(\alpha \operatorname{and} \beta \text { in } F) \tag{35}
\end{equation*}
$$

where $F(u)$ is the quadratic subfield of $F(i)$ defined by (1) and (3), and $u^{2}=\tau$.

Moreover, when $\gamma=\alpha^{2}-\beta^{2} \tau$, we have $N(\alpha+\beta \mu)=\left(\alpha^{2}-\beta^{2} \tau\right)^{2}$ $=\gamma^{2}$, which is the converse in the preceding theorem.

Suppose now that $\gamma=\alpha^{2}-\beta^{2} \tau$ and $\gamma^{2}=N(b)$. If $a=\alpha+\beta u$, so that $\gamma=a a^{\prime}$, we have $\gamma^{2}=N(a)=N(b)$. It follows that $b \neq 0$ and $N\left(a b^{-1}\right)=1, a=w b$, where $N(w)=1$. Thus we have the following corollary.

Corollary 1. Let $\gamma=a a^{\prime}$, where a is in $F(u)$. Then $\gamma^{2}=N(b)$ for b in $F(i)$ if and only if b is the product of a by a unit of $F(i)$.

Since $-1=d d^{\prime}$, where d is given in (16) and is in $F(u)$, we have also the following result.

Corollary 2. The scalar $\gamma^{2}=N(b)$ for b in $F(i)$ if and only if $-\gamma=e e^{\prime}$ for e in $F(u)$.
3. The Wedderburn Norm Condition. For a cyclic algebra of order sixteen Wedderburn's condition becomes

$$
\gamma^{r} \neq N(a), \quad(r=1,2,3)
$$

It is easily shown* that if γ or γ^{3} were a norm then A would not be a division algebra. Hence the only possible case is $\gamma^{2}=N(a)$. By Theorem 1 this implies that $\gamma=\alpha^{2}-\beta^{2} \tau$. Consider the sub-algebra

$$
\sum=\left(y^{r}, u y^{r}\right), \quad(r=0,1,2,3)
$$

an algebra of order eight with $y u=-u y, y^{4}=\gamma, u^{2}=\tau$ in F, $y^{2} u=u y^{2}$. We shall write

$$
\begin{equation*}
s=\left(e+y^{2}\right) y, \quad t=i\left(a_{1}+y^{2}\right), \quad a_{1}=\beta_{1} q-\beta_{2} u \tag{36}
\end{equation*}
$$

where we have used Corollary 2 to write

$$
\begin{equation*}
-\gamma=e e^{\prime}, \quad e=\beta_{1}+\beta_{2} u, \quad\left(\beta_{1} \text { and } \beta_{2} \text { in } F\right) \tag{37}
\end{equation*}
$$

and have

$$
\begin{equation*}
y i=\theta(i) y, \theta(i)=q i, q=\Delta^{-1}(u+1), q q^{\prime}=-1 \tag{38}
\end{equation*}
$$

since $\Delta^{2} q q^{\prime}=(u+1)(-u+1)=-\left(1+\Delta^{2}\right)+1=-\Delta^{2}$. We shall compute

$$
\begin{aligned}
s t & =\left[\left(e+y^{2}\right) y\right]\left[i\left(a_{1}+y^{2}\right)\right]=\left(e+y^{2}\right) q i\left(a_{1}^{\prime}+y^{2}\right) y \\
& =i q\left(e-y^{2}\right)\left(a_{1}^{\prime}+y^{2}\right) y=i q\left[\left(e a^{\prime}-\gamma\right)+\left(e-a_{1}{ }^{\prime}\right) q y^{2}\right] y,
\end{aligned}
$$

since $y a=a^{\prime} y$ for every a of $F(i)$ and $y^{2} i=-i y^{2}$. Now

[^1]\[

$$
\begin{aligned}
& q\left(e a^{\prime}-\gamma\right)=q\left(e a^{\prime}+e e^{\prime}\right)=e q\left(a_{1}^{\prime}+e^{\prime}\right) \\
& \quad=e q\left[\beta_{1} q^{\prime}+\beta_{2} u+\beta_{1}-\beta_{2} u\right]=\beta_{1} e\left[q q^{\prime}+q\right]=\beta_{1} e(q-1) .
\end{aligned}
$$
\]

Also

$$
q\left(e-a_{1}^{\prime}\right)=q\left[\left(\beta_{1}+\beta_{2} u\right)-\left(\beta_{1} q^{\prime}+\beta_{2} u\right)\right]=\beta_{1}(q+1)
$$

It follows that

$$
\begin{equation*}
s t=\beta_{1} i\left[e(q-1)+(q+1) y^{2}\right] y . \tag{39}
\end{equation*}
$$

We have similarly
$t s=\left[i\left(a_{1}+y^{2}\right)\right]\left[\left(e+y^{2}\right) y\right]=i\left[\left(a_{1} e+\gamma\right)+\left(a_{1}+e\right) y^{2}\right] y$,
$a_{1} e+\gamma=a_{1} e-e e^{\prime}=e\left[\left(\beta_{1} q-\beta_{2} u\right)-\left(\beta_{1}-\beta_{2} u\right)\right]=\beta_{1} e(q-1)$,
while $a_{1}+e=\beta_{1} q-\beta_{2} u+\beta_{1}+\beta_{2} u=\beta_{1}(q+1)$. We then obtain immediately from (39)

$$
\begin{equation*}
s t=t s \tag{40}
\end{equation*}
$$

Consider the linear sets

$$
\begin{equation*}
B=(1, u, s, u s), \quad C=\left(1, y^{2}, t, y^{2} t\right) \tag{41}
\end{equation*}
$$

over F. We have the relations
(42) $s u=-u s, t y^{2}=-y^{2} t ; u y^{2}=y^{2} u, u t=t u, s y^{2}=y^{2} s, s t=t s$, so that every quantity of B is commutative with every quantity of C. We now show that
(43) $s^{2}=\left(e+y^{2}\right)\left(e^{\prime}+y^{2}\right) y^{2}=\left[\left(e e^{\prime}+\gamma\right)+\left(e+e^{\prime}\right) y^{2}\right] y^{2}=2 \beta_{1} \gamma$, since $e+e^{\prime}=2 \beta_{1}, e e^{\prime}=-\gamma$. Also

$$
\begin{aligned}
t^{2} & =i^{2}\left(a_{1}-y^{2}\right)\left(a_{1}+y^{2}\right)=i^{2}\left(a_{1}{ }^{2}-\gamma\right) \\
& =i^{2}\left[\beta_{1}{ }^{2} q^{2}-2 \beta_{1} \beta_{2} q u+\beta_{2}{ }^{2} \tau+\beta_{1}{ }^{2}-\beta_{2}{ }^{2} \tau\right] \\
& =i^{2} \beta_{1}{ }^{2}\left(q^{2}+1\right)-2 \beta_{1} \beta_{2} q u i^{2},
\end{aligned}
$$

since $\gamma=-e e^{\prime}$. We have also $i^{2}=\nu(u-\tau)$, so that

$$
\begin{aligned}
i^{2} q & =\nu \Delta^{-1}(u-\tau)(u+1)=\Delta^{-1} \nu(\tau-\tau+u-u \tau) \\
& =\Delta^{-1} \nu u(1-\tau)=\Delta^{-1} \nu u\left(-\Delta^{2}\right)=-\Delta \nu u .
\end{aligned}
$$

Moreover, we know that

$$
\begin{aligned}
i^{2}\left(q^{2}+1\right) & =i^{2}\left[\Delta^{-2}(\tau+2 u+1)+1\right]=\Delta^{-2} i^{2}\left[2 u+\tau+\left(1+\Delta^{2}\right)\right] \\
& =2 \nu \Delta^{-2}(u-\tau)(u+\tau)=2 \nu \Delta^{-2}\left(\tau-\tau^{2}\right)=-2 \nu \tau .
\end{aligned}
$$

Hence

$$
\begin{equation*}
t^{2}=2 \nu \tau \beta_{1}\left(\beta_{2} \Delta-\beta_{1}\right) \tag{44}
\end{equation*}
$$

We shall assume at this point that

$$
\begin{equation*}
\beta_{1} \neq 0, \quad \beta_{2} \Delta-\beta_{1} \neq 0 \tag{45}
\end{equation*}
$$

for otherwise either $s^{2}=0$ or $t^{2}=0$, and A is evidently not a divi. sion algebra since from their form neither s nor t is zero. As a consequence, $a_{1}{ }^{2}-\gamma \neq 0$ has an inverse in $F(u)$ and $e^{2}-\gamma \neq 0$ has an inverse in $F(u)$ since $t^{2}=i^{2}\left(a_{1}{ }^{2}-\gamma\right) \neq 0$, while if

$$
e^{2}-\gamma=e^{2}-e e^{\prime}=0
$$

then $e\left(e-e^{\prime}\right)=2 \beta_{1} e=0$, contrary to the hypothesis that $\beta_{1} \neq 0$, so that $e \neq 0$ has an inverse in $F(u)$. The sets B and C are generalized quaternion algebras over F, since in B

$$
u^{2}=\tau, s^{2}=2 \beta_{1} \gamma, \quad s u=-u s
$$

while in C

$$
\left(y^{2}\right)^{2}=\gamma, t^{2}=2 \nu \tau \beta_{1}\left(\beta_{2} \Delta-\beta_{1}\right), \quad y^{2} t=-t y^{2}
$$

and evidently from the form of s and t the quantities $1, u, s, u s$ are linearly independent in F, and the quantities $1, y^{2}, t, y^{2} t$ are linearly independent in F, when $i^{\alpha} y^{\beta}(\alpha, \beta=0,1,2,3)$ form a basis of A. The linear set $B C=C B$ of all sums of all products of quantities of B and quantities of C is an algebra, since a product

$$
\left(\sum_{\lambda} b_{1 \lambda} c_{1 \lambda}\right)\left(\sum_{\mu} b_{2 \mu} c_{2 \mu}\right)=\sum_{\lambda, \mu}\left(b_{1 \lambda} b_{2 \mu}\right)\left(c_{1 \lambda} c_{2 \mu}\right)
$$

is in $B C$ because for every λ and μ the quantities $b_{1 \lambda} b_{2 \mu}$ are in B and $C_{1 \lambda} C_{2 \mu}$ are in C. Now $B C$ contains $F(u)$ and hence $\left(\gamma-a_{1}{ }^{2}\right)^{-1}$, $\left(\gamma-e^{2}\right)^{-1}$. Since $B C$ contains s, t, e, a_{1}, y^{2}, and is an algebra, it contains

$$
\begin{aligned}
\left(\gamma-a_{1}{ }^{2}\right)^{-1}\left(t y^{2}-a_{1} t\right) & =\left(\gamma-a_{1}^{2}\right)^{-1} i\left(a_{1} y^{2}+\gamma-a_{1}{ }^{2}-a_{1} y^{2}\right) \\
& =\left(\gamma-a_{1}^{2}\right)^{-1}\left(\gamma-a_{1}^{2}\right) i=i
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\gamma-e^{2}\right)^{-1}\left(y^{2} s-e s\right) & =\left(\gamma-e^{2}\right)^{-1}\left[\left(y^{2} e+\gamma\right)-e y^{2}-e^{2}\right] y \\
& =\left(\gamma-e^{2}\right)^{-1}\left(\gamma-e^{2}\right) y=y
\end{aligned}
$$

But then $B C$ contains the basis of A and has order sixteen. It follows that A is the direct product of B and C.

Theorem 2. Let $\gamma^{2}=N(a)$ for some a of $F(i)$ so that $-\gamma=e e^{\prime}$, where $e=\beta_{1}+\beta_{2} u$ and β_{1} and β_{2} are in F. Let $\beta_{1} \neq 0, \beta_{2} \Delta \neq \beta_{1}$, a set of necessary conditions that A be a division algebra. Then the cyclic algebra A is the direct product of two generalized quaternion algebras $B=(1, u, s, u s), C=(1, j, t, j t)$, with $y^{2}=j$, $s u=-u s$, $t j=-j t$, and

$$
\begin{equation*}
u^{2}=\tau, \quad s^{2}=2 \beta_{1} \gamma=\sigma, \quad j^{2}=\gamma, \quad t^{2}=\rho=2 \nu \beta_{1} \tau\left(\beta_{2} \Delta-\beta_{1}\right) \tag{46}
\end{equation*}
$$

Consider now the direct product of any two generalized quaternion algebras B and C. It is known that d in B has the property that d^{2} is in F if and only if

$$
\begin{equation*}
d=\lambda_{1} u+\lambda_{2} s+\lambda_{3} u s, d^{2}=Q_{1}=\lambda_{1}{ }^{2} \tau+\lambda_{2}{ }^{2} \sigma-\lambda_{3}{ }^{2} \sigma \tau \tag{47}
\end{equation*}
$$

with λ_{1}, λ_{2} and λ_{3} in F. Similarly if f is in C then f^{2} is in F if and only if

$$
\begin{equation*}
f=\lambda_{4} j+\lambda_{5} t+\lambda_{6} j t, f^{2}=Q_{2}=\lambda_{4}{ }^{2} \gamma+\lambda_{5}{ }^{2} \rho-\lambda_{6}{ }^{2} \gamma \rho \tag{48}
\end{equation*}
$$

for λ_{4}, λ_{5}, and λ_{6} in F. Suppose first that $Q \equiv Q_{1}-Q_{2}$ is a null form, that is, that we can make $Q=0$ for values of $\lambda_{1}, \cdots, \lambda_{6}$ in F not all zero. Define d by (47) and f by (48) for the particular λ_{i} we have used to make Q vanish. Since A is the direct product of B and C, the quantities $d-f$ and $d+f$ are both not zero when the λ_{i} are not all zero. But $(d-f)(d+f)=d^{2}-f^{2}=Q_{1}-Q_{2}=Q=0$. Hence in A a product of two non-zero quantities is zero and A is not a division algebra.

Conversely, let Q not be a null form. Then, in particular, Q_{1} and Q_{2} are not null forms and B and C are known* to be division algebras. The algebra Γ whose quantities have the form $X=x_{1}+x_{2} u$, where x_{1} and x_{2} are in C, has a division sub-algebra C and the property that if we define $x^{\prime}=x$ for every x of C, then $u^{2}=\tau$ in $C, x^{\prime \prime}=\left(x^{\prime}\right)^{\prime}=u^{2} x u^{-2}=x$ for every x of C. But then Γ is known \dagger to be a division algebra if and only if $\tau \neq x^{\prime} x=x^{2}$ for any x of C. But τ is in F and if $\tau=x^{2}$ then, since x is an f of (48), and u is a d of (47), we have $Q=0$ for $\lambda_{1}=1$, a contradiction of our hypothesis that Q was not a null form.

Define $X^{\prime}=x_{1}-x_{2} u$, for every X of Γ, and we will have $X^{\prime}=s X s^{-1}, X^{\prime \prime}=s^{2} X s^{-2}=X, s^{2}=\sigma$ in F. Then it is known

[^2](Dickson, loc. cit.) that A, whose quantities have the form $X+Y s$, is a division algebra when Γ is one if and only if
$$
s^{2}=X^{\prime} X \text { for any } X \text { of } \Gamma
$$

But if $s^{2}=X^{\prime} X,\left(x_{1}-x_{2} u\right)\left(x_{1}+x_{2} u\right)=x_{1}{ }^{2}-x_{2}{ }^{2} \tau+\left(x_{1} x_{2}-x_{2} x_{1}\right) u=\sigma$ we have

$$
\begin{equation*}
\sigma=x_{1}^{2}-x_{2}^{2} \tau, x_{1} x_{2}=x_{2} x_{1} \tag{49}
\end{equation*}
$$

First let x_{1} and x_{2} be in F. Then Q is a null form when we take $\lambda_{1}=\sigma, \lambda_{2}=\tau x_{2}, \lambda_{3}=x_{1}, \lambda_{4}=\lambda_{5}=\lambda_{6}=0$, since $0=\sigma \tau\left(\sigma+x_{2}^{2} \tau-x_{1}^{2}\right)$ $=\sigma^{2} \tau+\left(\tau x_{2}\right)^{2} \sigma-x_{1}^{2} \sigma \tau$, a contradiction. Next let x_{1} be in F but x_{2} not in F. Then $x_{2}{ }^{2} \tau=x_{1}{ }^{2}-\sigma$ is in F and $x_{2} \tau$ is an f of (48) while $\left(x_{2} \tau\right)^{2}=Q_{2}=x_{1}^{2} \tau-\sigma \tau$ so that Q is a null form for $Q_{2}=\left(x_{2} \tau\right)^{2}$, $\lambda_{1}=x_{1}, \lambda_{2}=0, \lambda_{3}=1$. The only remaining case is where x_{1} is not in F. If $x_{1}{ }^{2}$ were in F so that x_{1} would be an f of (48), then $x_{1} x_{2}$ $=x_{2} x_{1}$ implies that $x_{2}=\xi+\eta x_{1}, \xi$ and η in F, since in a generalized quaternion division algebra the only quantities commutative with a non-scalar quantity x are scalar coefficient polynomials in x. But $x_{2}{ }^{2}$ is in F so that $\eta=0$ or $\xi=0$. When $\eta=0$, then $x_{1}{ }^{2}=\xi^{2} \tau+\sigma$ and $Q_{2}=Q_{1}=\xi^{2} \tau+1^{2} \sigma-O \sigma \tau$, a contradiction of our hypothesis. When $\xi=0$ then $x_{2}=\eta x_{1}$ and $x_{1}^{2}-x_{2}^{2} \tau$ $=x_{1}{ }^{2}\left(1-\eta^{2} \tau\right)$. But by Lemma 1 we have $\left(1-\eta^{2} \tau\right)^{-1}=\delta_{1}{ }^{2}-\delta_{2}{ }^{2} \tau$ and $x_{1}{ }^{2}=Q_{2}=\sigma \delta_{1}{ }^{2}-\sigma \tau \delta_{2}{ }^{2}=Q_{1}$, a contradiction. We have finally come to the case where neither x_{1} nor its square is in F. We then have, where f is given by (47) and $f^{2}=Q_{2}$, that $x_{1}=\lambda_{7}+f$ with $\lambda_{7} \neq 0$ in F. As before the relation $x_{1} x_{2}=x_{2} x_{1}$ implies that x_{2} is a polynomial in x_{1}. But now we may write $x_{2}=\xi+\eta f$. Now

$$
x_{1}{ }^{2}-x_{2}^{2} \tau=\lambda_{7}{ }^{2}+2 \lambda_{7} f+Q_{2}-\left(\xi^{2}+2 \xi \eta f+\eta^{2} Q_{2}\right) \tau=\sigma .
$$

It follows that $2 \lambda_{7}-2 \xi \eta \tau=0$, so that $\lambda_{7}=\xi \eta \tau$ and

$$
\sigma=\xi^{2} \eta^{2} \tau^{2}-\xi^{2} \tau+Q_{2}\left(1-\eta^{2} \tau\right)=\left(Q_{2}-\xi^{2} \tau\right)\left(1-\eta^{2} \tau\right)
$$

The quantity $\left(1-\eta^{2} \tau\right) \neq 0$ has an inverse $\delta_{1}^{2}-\delta_{2}^{2} \tau$ with δ_{1} and δ_{2} in F by Lemma 1, and $Q_{2}-\xi^{2} \tau=\sigma\left(\delta_{1}{ }^{2}-\delta_{2}^{2} \tau\right)$, so that we have $Q_{2}=\xi^{2} \tau+\sigma \delta_{1}{ }^{2}-\sigma \tau \delta_{2}{ }^{2}=Q_{1}$. We have again shown that if A were not a division algebra, then Q would be a null form, a contradiction of our hypothesis. Hence A is a division algebra and we have proved the following theorem

Theorem 3. A direct product $A=B \times C$ of two generalized quaternion algebras $B=(1, u, s, u s), C=(1, j, t, j t)$ with $u^{2}=\tau$, $s^{2}=\sigma, s u=-u s, j^{2}=\gamma, t^{2}=\rho, t j=-j t$, is a division algebra if and only if the quadratic form

$$
\begin{equation*}
Q=\left(\lambda_{1}{ }^{2} \tau+\lambda_{2}{ }^{2} \sigma-\lambda_{3}{ }^{2} \sigma \tau\right)-\left(\lambda_{4}{ }^{2} \gamma+\lambda_{5}{ }^{2} \rho-\lambda_{6}{ }^{2} \gamma \rho\right) \tag{50}
\end{equation*}
$$

in the variables $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{6}$ in F, is not a null form.
We may now apply Theorem 3 and our previous results to obtain complete necessary and sufficient conditions that a cyclic algebra be a division algebra. We first assume that γ^{2} $=N(a)$ for some a in $F(i)$. If $\gamma=0$, then $-\gamma=\beta_{1}{ }^{2}-\beta_{2}{ }^{2} \tau$ with $\beta_{1}=\beta_{2}=0$, and the form Q may be defined. If $\gamma \neq 0$, then by Corollary 2 we can again define the form Q with

$$
\sigma=2 \beta_{1} \gamma, \rho=2 \nu \tau \beta_{1}\left(\beta_{2} \Delta-\beta_{1}\right) .
$$

Suppose first that Q is a null form. If $\gamma=0$, then $y^{4}=0$ while y is not zero and A is not a division algebra. If $\gamma \neq 0$ but $\beta_{1}=0$ or $\beta_{2} \Delta-\beta_{1}=0$, then again, as we have seen, A is not a division algebra. The only other case is where Theorem 2 can be applied and, by Theorem 3, A is again not a division algebra. Conversely let Q be not a null form. Then obviously from our definition of Q as above and the fact that we have the coefficients of Q all not zero in a non-null form, $\gamma \neq 0, \beta_{2} \Delta \neq \beta_{1}, \beta_{1} \neq 0$, and again A is the direct product of B and C; we may again apply Theorem 3 , and A is a division algebra.

Theorem 4. Let A be a cyclic algebra with basis $i^{\lambda} y^{\mu},(\lambda, \mu=0$, $1,2,3)$, where i is a root of the cyclic quartic

$$
\phi(\omega) \equiv \omega^{4}+2 \nu \tau \omega^{2}+\nu^{2} \Delta^{2} \tau=0
$$

with $\tau=1+\Delta^{2}, \nu \neq 0, \Delta \neq 0$ in F, and τ not the square of any element in F. Also

$$
\theta(i)=q i, q \Delta=1+u, i^{2}=\nu(u-\tau), y i=\theta(i) y, y^{4}=\gamma i n F
$$

Suppose that γ^{2} is the norm of a quantity of $F(i)$ so that we have $-\gamma=\beta_{1}{ }^{2}-\beta_{2}{ }^{2} \tau$ with β_{1} and β_{2} in F. Then A is a division algebra if and only if the form

$$
Q=\lambda_{1}{ }^{2} \tau+\lambda_{2}{ }^{2} \sigma-\lambda_{3}{ }^{2} \sigma \tau-\lambda_{4}{ }^{2} \gamma-\lambda_{5}{ }^{2} \rho+\lambda_{6}{ }^{2} \gamma \rho
$$

with $\sigma=2 \beta_{1} \gamma, \rho=2 \beta_{1} \nu \tau\left(\beta_{2} \Delta-\beta_{1}\right)$ does not vanish for any λ_{1}, \cdots, λ_{6} not all zero and in F.

The only other case is $\gamma^{2} \neq N(a)$. Then obviously $\gamma \neq N(a)$ since otherwise $\gamma^{2}=N\left(a^{2}\right)$, a contradiction. If $\gamma^{3}=N(a)$, then either $\gamma=0$, whence $\gamma^{2}=N(0)$, a contradiction, or else $\gamma \neq 0$, $\gamma^{6}=\gamma^{2} \gamma^{4}=N\left(a^{2}\right), \gamma^{2}=N\left(a \gamma^{-1}\right)$, again a contradiction. Hence the condition $\gamma^{2} \neq N(a)$ is equivalent to the Wedderburn norm condition. We have also shown the former condition equivalent to the condition $\gamma \neq-e e^{\prime}$ for any e of $F(u)$. We thus have proved the following theorem

Theorem 5. Let all the hypotheses of Theorem 4 be satisfied except that now $\gamma^{2} \neq N(a)$ for any a of $F(i)$, or, what is the same thing, $-\gamma$ is not expressible in the form $\beta_{1}{ }^{2}-\beta_{2}{ }^{2} \tau, \beta_{1}$ and β_{2} in F. Then the cyclic algebra A is a division algebra.

We shall finally pass to the case where F is the field R of all rational numbers. Quadratic forms have been studied in detail for this case and it has been shown that every indefinite quadratic form in five or more variables is a null form.* The numbers $\tau, \sigma,-\sigma \tau$ all have the same sign only when all are negative. If they are all negative and $\gamma, \rho,-\gamma \rho$ are also all negative then τ and $-\gamma$ have opposite signs so that $Q=Q_{1}-Q_{2}$ is an indefinite quadratic form. In the other cases obviously Q is indefinite, providing that its coefficients are all not zero. When some of the coefficients of Q are zero then, by making all the other variables zero and those with zero coefficients not zero, we can make Q zero so that Q is a null form. When none of the coefficients of Q is zero then Q is an indefinite quadratic form in six variables and hence is a null form. Hence in every case the cyclic algebra A is not a division algebra when the hypotheses of Theorem 4 are satisfied. We have the following result.

Theorem 6. When $F=R$, the field of all rational numbers, the Wedderburn norm condition for cyclic algebras of order sixteen is necessary as well as sufficient.

Columbia University

[^3]
[^0]: * Presented to the Society, December 30, 1930.
 \dagger Transactions of this Society, vol. 15 (1914), pp. 162-166.
 \ddagger See a paper by the author, On direct products, cyclic algebras, and pure Riemann matrices, to appear in the Transactions of this Society, January, 1931.
 § See R. Garver, Quartic equations with certain groups, Annals of Mathematics, vol. 29 (1928), pp. 47-51.

[^1]: * See the author's paper On direct products, etc., loc. cit.

[^2]: * See L. E. Dickson, Algebren und ihre Zahlentheorie, p. 47, for the condition $\sigma \neq \xi_{1}{ }^{2}-\xi_{2}{ }^{2} \tau$, equivalent to the condition we have stated.
 \dagger A theorem of L. E. Dickson, ibid., pp. 63-64.

[^3]: * For the first complete proof of this theorem see L. E. Dickson, Studies in the Theory of Numbers.
 \dagger We also have here a new short proof of the author's theorem that a direct product of two rational generalized quaternion division algebras is never a division algebra, by using the above proof that when Q is a null form A is not a division algebra. This theorem was first proved by the author and published in the Annals of Mathematics, vol. 30 (1929), pp. 621-625.

