NOTE ON THE DISCRIMINANT MATRIX OF AN ALGEBRA*

BY L. E. BUSH

The purpose of this note is to extend MacDuffee's normal basis[†] to a general linear associative algebra.

Let \mathfrak{A} be a linear associative algebra over an infinite field \mathfrak{F} , with the basis e_1, e_2, \cdots, e_n , and let the constants of multiplication be denoted by c_{ijk} . Let $T_1 = (\tau_{rs})$ be the first discriminant matrix of \mathfrak{A} , and let $d_h = \sum_k c_{hkk}$. Then $\tau_{rs} = \tau_{sr} = \sum_k c_{srh} d_h$.

If \mathfrak{A} is nilpotent, $d_i = 0$, $(i = 1, 2, \dots, n)$, \ddagger and $T_1 = 0$. We now suppose that \mathfrak{A} is non-nilpotent and therefore possesses a principal idempotent element e_1 . \S Let \mathfrak{N} be the radical of \mathfrak{A} , and \mathfrak{B} be the set of elements x of \mathfrak{A} for which $e_1x = 0$. Then $\mathfrak{B} < \mathfrak{N}$. \P It is easily shown that $\mathfrak{A} = e_1 \mathfrak{A} + \mathfrak{B}$, where $e_1 \mathfrak{A}$ and \mathfrak{B} are algebras whose intersection is zero. Let $e_1 \mathfrak{A} = \mathfrak{L} + \mathfrak{M}$, where \mathfrak{M} is the radical of $e_1 \mathfrak{A}$ and \mathfrak{L} is a linear system supplementary to \mathfrak{M} in $e_1 \mathfrak{A}$. It is not difficult to show that $\mathfrak{M} = \mathfrak{M} + \mathfrak{B}$. \parallel We may therefore select the basis of \mathfrak{A} as e_1, e_2, \dots, e_n , so that e_1 is the principal idempotent selected above, $e_1, e_2, \dots, e_\sigma$ is a basis for \mathfrak{L} , $e_{\sigma+1}$, $e_{\sigma+2}, \dots, e_{\rho}$ a basis for \mathfrak{M} , and $e_{\rho+1}, e_{\rho+2}, \dots, e_n$ a basis for \mathfrak{B} . Then $d_i = 0, (i > \sigma)$,** and $d_1 = \sum_k c_{1kk} = \rho > 0$, since if x is in $e_1 \mathfrak{A}$, we have $e_1 x = x$.

Direct computation shows that if e_1, e_2, \dots, e_n are subjected to a transformation, $e'_i = \sum_j a_{ij}e_j$, the new d's are given by $d'_i = \sum_j a_{ij}d_j$, $(i=1, 2, \dots, n)$. Hence if we make the nonsingular transformation

^{*} Presented to the Society, November 28, 1931.

[†] C. C. MacDuffee, Transactions of this Society, vol. 33, p. 427, proves Theorems 1 and 2 only for algebras with a principal unit. The terminology and notation in this paper are in agreement with that of MacDuffee.

[‡] L. E. Dickson, Algebren und ihre Zahlentheorie, 1927, p. 108.

[§] Dickson, loc. cit., p. 100.

[¶] Dickson, loc. cit., p. 100.

 $[\]parallel$ This relation follows directly from Dickson, loc. cit., p. 100, Theorem 5, or it can be proved independently.

^{**} Dickson, loc. cit., p. 108.

L. E. BUSH

$$\begin{cases} e_1' = e_1, \\ e_i' = -\frac{d_i}{\rho} e_1 + e_i, \\ e_i' = e_i, \end{cases} (1 < i \leq \sigma), \\ (i > \sigma), \end{cases}$$

we obtain $d'_1 = \rho$, $d'_i = 0$, (i > 1). This transformation does not

alter the bases of \mathfrak{N} and \mathfrak{B} . We now have $\tau'_{11} = d'_1 = \rho$, $\tau'_{r1} = \tau'_{1r} = c'_{1r1}d'_1 = 0$, (r > 1) and, since \mathfrak{N} is an invariant subalgebra of \mathfrak{A} , $c'_{ijk} = 0$, $(i \text{ or } j > \sigma, k \le \sigma)$, and therefore $\tau'_{rs} = \tau'_{sr} = c'_{sr1}d_1 = 0$, $(r \text{ or } s > \sigma)$. This gives

(ρ	0	0	$\cdots 0$	$0 \cdot \cdot \cdot 0$	
$T_{1}' =$	0	$ au_{22}'$	$ au_{23}'$	$\cdots \tau_{2\sigma}'$	$0 \cdot \cdot \cdot 0$	
	0	$ au_{32}'$	$ au_{33}'$	$\cdots 0 \\ \cdots au'_{2\sigma} \\ \cdots au'_{3\sigma}$	$0 \cdots 0$	
			•			
	0	$ au'_{\sigma 2}$	$ au_{\sigma 3}'$	$\cdots au'_{\sigma\sigma}$	$0 \cdot \cdot \cdot 0$	•
	0	0	0	$\cdots 0$	$0 \cdot \cdot \cdot 0$	
			•			
	0	0	0	$\cdots 0$	$0 \cdot \cdot \cdot 0$	

It is obvious that T'_1 can now be reduced to a diagonal matrix by transformations in \mathfrak{F} which leave e'_1 , $e'_{\sigma+1}$, $e'_{\sigma+2}$, \cdots , e'_n invariant, and leave $d'_2 = d'_3 = \cdots = d'_n = 0$.

We may now reduce the basis of \mathfrak{N} (or if \mathfrak{A} is nilpotent, the basis of \mathfrak{A} itself) to normal form* by a transformation in \mathfrak{F} of the type

$$Te_i' = e_i, \qquad (i \leq \sigma),$$

$$\oint e_i' = \sum_{j=\sigma+1}^n a_{ij} e_j, \qquad (i > \sigma).$$

Such a transformation does not alter d_i , $(i = 1, 2, \dots, n)$, e_1 , or T_1 .

Since the rank of T_1 is σ ,[†] we have proved the following result.

THEOREM. A basis can be so chosen for A that

50

^{*} Dickson, loc. cit., p. 111.

[†] Dickson, loc. cit., p. 110.

$$T_{1} = \begin{vmatrix} g_{1} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & g_{2} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & g_{3} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & g_{\sigma} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{vmatrix}$$

where the g's are in \mathfrak{F} and $d_2 = d_3 = \cdots = d_n = 0$. If \mathfrak{A} is nilpotent, the basis is normal. If \mathfrak{A} is not nilpotent, $d_1 = g_1 \neq 0$, $g_i \neq 0$, $(i = 2, 3, \cdots, \sigma)$, where $n - \sigma$ is the order of the radical of \mathfrak{A} , and $e_{\sigma+1}$, $e_{\sigma+2}, \cdots, e_n$ is a normal basis for this radical, and e_1 is a principal idempotent of \mathfrak{A} .

We may now define a basis of the type whose existence is shown in the above theorem as a *normal basis for* \mathfrak{A} . In case \mathfrak{A} is nilpotent, this basis is the ordinary normal basis for a nilpotent algebra; in case \mathfrak{A} has a principal unit, it is MacDuffee's normal basis.

It is evident that a transformation of the form

$$\begin{cases} e'_{1} = e_{1}, \\ e'_{i} = e_{i} + \sum_{j=\sigma+1}^{n} a_{ij}e_{j}, \\ e'_{i} = e_{i}, \end{cases} (1 < i \leq \sigma), \\ (i > \sigma), \end{cases}$$

leaves unaltered all the properties of the normal basis. But by such a transformation we can make $e_1, e_2, \cdots, e_{\sigma}$ the basis of a semi-simple subalgebra of \mathfrak{A} having the principal unit e_1 .*

COROLLARY. The normal basis for a non-nilpotent algebra \mathfrak{A} can be so chosen that $(e_1, e_2, \cdots, e_{\sigma})$ is a semi-simple subalgebra of \mathfrak{A} having the principal unit e_1 , and $(e_{\sigma+1}, e_{\sigma+2}, \cdots, e_n)$ is the radical of \mathfrak{A} .

As a consequence of the above theorem we can now omit from MacDuffee's Theorem 2 the restriction "with a principal unit".

THE OHIO STATE UNIVERSITY

1932.]

^{*} Dickson, loc. cit., p. 136.