NOTE ON THE DISCRIMINANT MATRIX OF AN ALGEBRA*

BY L. E. BUSH

The purpose of this note is to extend MacDuffee's normal basis \dagger to a general linear associative algebra.

Let \mathfrak{A} be a linear associative algebra over an infinite field \mathfrak{F}, with the basis $e_{1}, e_{2}, \cdots, e_{n}$, and let the constants of multiplication be denoted by $c_{i j k}$. Let $T_{1}=\left(\tau_{r s}\right)$ be the first discriminant matrix of \mathfrak{A}, and let $d_{h}=\sum_{k} c_{h k k}$. Then $\tau_{r s}=\tau_{s r}=\sum_{h} c_{s r h} d_{h}$.

If \mathfrak{H} is nilpotent, $d_{i}=0,(i=1,2, \cdots, n), \ddagger$ and $T_{1}=0$. We now suppose that \mathfrak{H} is non-nilpotent and therefore possesses a principal idempotent element e_{1}. \S Let \mathfrak{N} be the radical of \mathfrak{N}, and \mathfrak{B} be the set of elements x of \mathfrak{A} for which $e_{1} x=0$. Then $\mathfrak{B}<\mathfrak{N}$. \boldsymbol{T} It is easily shown that $\mathfrak{Z}=e_{1} \mathfrak{N}+\mathfrak{B}$, where $e_{1} \mathfrak{Z}$ and \mathfrak{B} are algebras whose intersection is zero. Let $e_{1} \mathfrak{H}=R+\bar{N}$, where $\overline{\mathfrak{R}}$ is the radical of $e_{1} \mathfrak{Z}$ and \mathfrak{R} is a linear system supplementary to $\overline{\mathfrak{R}}$ in $e_{1} \mathfrak{N}$. It is not difficult to show that $\mathfrak{N}=\overline{\mathfrak{R}}+\mathfrak{B}$.\| We may therefore select the basis of \mathfrak{H} as $e_{1}, e_{2}, \cdots, e_{n}$, so that e_{1} is the principal idempotent selected above, $e_{1}, e_{2}, \cdots, e_{\sigma}$ is a basis for $R, e_{\sigma+1}$, $e_{\sigma+2}, \cdots, e_{\rho}$ a basis for $\overline{\mathfrak{R}}$, and $e_{\rho+1}, e_{\rho+2}, \cdots, e_{n}$ a basis for \mathfrak{B}. Then $d_{i}=0,(i>\sigma),{ }^{* *}$ and $d_{1}=\sum_{k} c_{1 k k}=\rho>0$, since if x is in $e_{1} \mathfrak{Z}$, we have $e_{1} x=x$.

Direct computation shows that if $e_{1}, e_{2}, \cdots, e_{n}$ are subjected to a transformation, $e_{i}^{\prime}=\sum_{j} a_{i j} e_{j}$, the new d 's are given by $d_{i}^{\prime}=\sum_{j} a_{i j} d_{j}, \quad(i=1,2, \cdots, n)$. Hence if we make the nonsingular transformation

[^0]\[

\left\{$$
\begin{array}{lr}
e_{1}^{\prime}=e_{1}, \\
e_{i}^{\prime}=-\frac{d_{i}}{\rho} e_{1}+e_{i}, & (1<i \leqq \sigma) \\
e_{i}^{\prime}=e_{i}, & (i>\sigma)
\end{array}
$$\right.
\]

we obtain $d_{1}^{\prime}=\rho, d_{i}^{\prime}=0,(i>1)$. This transformation does not alter the bases of $\overline{\mathfrak{R}}$ and \mathfrak{B}.

We now have $\tau_{11}^{\prime}=d_{1}^{\prime}=\rho, \tau_{r 1}^{\prime}=\tau_{1 r}^{\prime}=c_{1 r 1}^{\prime} d_{1}^{\prime}=0,(r>1)$ and, since \mathfrak{N} is an invariant subalgebra of $\mathfrak{N}, c_{i j k}^{\prime}=0$, $(i$ or $j>\sigma, k \leqq \sigma)$, and therefore $\tau_{r s}^{\prime}=\tau_{s r}^{\prime}=c_{s r_{1}}^{\prime} d_{1}=0,(r$ or $s>\sigma)$. This gives

$$
\left.T_{1}^{\prime}=\| \begin{array}{cccccccc}
\rho & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \tau_{22}^{\prime} & \tau_{23}^{\prime} & \cdots & \tau_{2 \sigma}^{\prime} & 0 & \cdots & 0 \\
0 & \tau_{32}^{\prime} & \tau_{33}^{\prime} & \cdots & \tau_{3 \sigma}^{\prime} & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdots & \cdots
\end{array}\right]
$$

It is obvious that T_{1}^{\prime} can now be reduced to a diagonal matrix by transformations in \mathfrak{F} which leave $e_{1}^{\prime}, e_{\sigma+1}^{\prime}, e_{\sigma+2}^{\prime}, \cdots, e_{n}^{\prime}$ invariant, and leave $d_{2}^{\prime}=d_{3}^{\prime}=\cdots=d_{n}^{\prime}=0$.

We may now reduce the basis of \mathfrak{N} (or if \mathfrak{N} is nilpotent, the basis of \mathfrak{H} itself) to normal form* by a transformation in \mathfrak{F} of the type

$$
\left\{\begin{aligned}
e_{i}^{\prime} & =e_{i}, & & (i \leqq \sigma) \\
e_{i}^{\prime} & =\sum_{j=\sigma+1}^{n} a_{i j} e_{j}, & & (i>\sigma)
\end{aligned}\right.
$$

Such a transformation does not alter $d_{i},(i=1,2, \cdots, n), e_{1}$, or T_{1}.

Since the rank of T_{1} is σ, \dagger we have proved the following result.

Theorem. A basis can be so chosen for $\mathfrak{A l}$ that

[^1]where the g's are in \mathfrak{F} and $d_{2}=d_{3}=\cdots=d_{n}=0$. If \mathfrak{Y} is nilpotent, the basis is normal. If \mathfrak{H} is not nilpotent, $d_{1}=g_{1} \neq 0, g_{i} \neq 0,(i=2$, $3, \cdots, \sigma)$, where $n-\sigma$ is the order of the radical of \mathfrak{N}, and $e_{\sigma+1}$, $e_{\sigma+2}, \cdots, e_{n}$ is a normal basis for this radical, and e_{1} is a principal idempotent of \mathfrak{N}.

We may now define a basis of the type whose existence is shown in the above theorem as a normal basis for \mathfrak{H}. In case \mathfrak{A} is nilpotent, this basis is the ordinary normal basis for a nilpotent algebra; in case \mathfrak{A} has a principal unit, it is MacDuffee's normal basis.

It is evident that a transformation of the form

$$
\left\{\begin{array}{lr}
e_{1}^{\prime}=e_{1}, \\
e_{i}^{\prime}=e_{i}+\sum_{j=\sigma+1}^{n} a_{i j} e_{j}, & (1<i \leqq \sigma), \\
e_{i}^{\prime}=e_{i}, & (i>\sigma),
\end{array}\right.
$$

leaves unaltered all the properties of the normal basis. But by such a transformation we can make $e_{1}, e_{2}, \cdots, e_{\sigma}$ the basis of a semi-simple subalgebra of \mathfrak{A} having the principal unit e_{1}.

Corollary. The normal basis for a non-nilpotent algebra \mathfrak{A} can be so chosen that $\left(e_{1}, e_{2}, \cdots, e_{\sigma}\right)$ is a semi-simple subalgebra of $\mathfrak{U l}$ having the principal unit e_{1}, and $\left(e_{\sigma+1}, e_{\sigma+2}, \cdots, e_{n}\right)$ is the radical of \mathfrak{Y}.

As a consequence of the above theorem we can now omit from MacDuffee's Theorem 2 the restriction "with a principal unit".

The Ohio State University

* Dickson, loc. cit., p. 136.

[^0]: * Presented to the Society, November 28, 1931.
 \dagger C. C. MacDuffee, Transactions of this Society, vol. 33, p. 427, proves Theorems 1 and 2 only for algebras with a principal unit. The terminology and notation in this paper are in agreement with that of MacDuffee.
 \ddagger L. E. Dickson, Algebren und ihre Zahlentheorie, 1927, p. 108.
 § Dickson, loc. cit., p. 100.
 【 Dickson, loc. cit., p. 100.
 || This relation follows directly from Dickson, loc. cit., p. 100, Theorem 5, or it can be proved independently.
 ** Dickson, loc. cit., p. 108.

[^1]: * Dickson, loc. cit., p. 111.
 \dagger Dickson, loc. cit., p. 110.

