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If the rank of the jacobian matrix is n — 2, that is, if there ex
ist two relations (and not more) between the ƒ s which do not 
involve the x'&, the hypersurfaces will all have the origin as a 
double point, and terms of the second degree of (10) tell us the 
nature of the singular point. 

We note that equation (7) would be satisfied if every element 
vanished. This would lead to n2 linear equations in the quanti
t i e s / / . I t is known that if the algebra is commutative and asso
ciative, these n2 equations have a unique solution for all analy
tic functions of w. The derivative congruence would in this case 
degenerate into a congruence of points, the function being 
monogenic. 
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1. Introduction. As one of several important results concern
ing the problem of moments for a finite interval, Hausdorfff has 
proved the following theorem. 

The problem of moments, which is to find a real function x(^) 
for 0 ^ t^ 1, such that 

(1) »n= [ tndx(t), (fi = 0, 1, 2, • • • ), 

in which the sequence fxo, Mi> M2> • * • is given in advance, has a 
monotonie non-decreasing solution, if and only if 

(2) A1/** = è ( - M VH-* à 0, for l, m = 0, 1, 2, • • • , 
»-0 \ V / 

in which case the sequence is said to be completely monotonie. 
The same problem (1) has a solution x(0 which is of bounded 

variation, if and only if 

* Presented to the Society, November 28, 1931. 
t Ueber das Momentenproblem für ein endliches Interval, Mathematische 

Zeitschrift, vol. 16 (1923), pp. 220-248. We refer to §§1 and 2. 
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(3) £ (p\\ A*—/*„| = 0(1) for p->*> 

Hausdorff proves this theorem starting from the system (1), 
which defines a positive linear functional operation by inter
polation in function space, and proves that the conditions (2) 
are necessary and sufficient for the existence of such a functional 
operation defined by the function %(/). In this note we shall 
proceed in the opposite way. We shall solve the set (2) of linear 
inequalities in infinitely many variables and shall find that its 
most general solution may be represented parametrically in the 
form (1). In another paper the same point of view will be applied 
to similar but more general problems considered by Carathéo-
dory, F. Riesz, and Hausdorff. 

2. Finite Sequences. I t seems natural to start first with the fol
lowing problem. Let us call the finite sequence JJL0, /XI, • • • , JJLP 

completely monotonie if 

(4) AVm ^ 0 for l, m = 0, 1, 2, • • • , p, with l + tn^p.-f 

We seek a parametric representation for the most general solution 
of the set (4) of linear inequalities. 

Such a representation is readily found. The identity Alfxm 

= Az/*m+i+AH"Vm shows that the set (4) is a consequence of its 
sub-set 

(5) Ap-mfJt,m è 0 , for m = 0, 1, 2, • • • , p, 

which means that the p+1 linear forms 

PP,O = M ° - ( 0 
PP,I = Mi 

Pp,2 = 

(6) 

pp,p—l 

pp,p 

+( î ) — 

M2 — • 

• • + ( - l ) p Up, 

• • + ( - I)*-VP, 

M P - I — Up, 

* This statement is certainly verified for the previous case, because (2) 
gives E J . o G ? ) | &-mHm\ =Em-o(^)A*-™Mm=MO. 

t This definition is justified by the fact that these are all the higher differ
ences which may be derived from our finite sequence. 
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IS 

MO 

should be non-negative. The linear transformation inverse to (6) 

= Pp,0 + ( J Pp,l + ( j Pp,2 + * * * + Pp,p, 

Ml = P p . l + l J Pp,2 + • * • + Pp,p, 

( 7 ) \Xi = Pp ,2 + • • * + P p . p , 

Mp—1 = = PpiP—l \ Pp,py 

\lp z= Pp.P' 

Our problem is solved by the set (7) which yields for 

(8) Pp.o è 0, pp.i ^ 0, • • • , pPtP ^ 0, 

a parametric representation for the most general finite sequence 
Mo, Mi, • • • , /Xp, which is completely monotonie. 

3. Infinite Sequences. We return to our original problem. 
The inequalities (2) are certainly necessary for a parametric 
representation (1) with x(0 monotonie, since 

AW = f /m(l - t)ldX(f) è 0. 
Jo 

Conversely, suppose that now the inequalities (2) hold. The set 
of inequalities (4) holds for every value of £ = 1, 2, 3, • • • and 
therefore also (6), (7), and (8) are true for these values. We shall 
obtain the set of equations (1) from the set (7) by making p-*co . 

The nth equation of the set (7) gives for p ^ n 

/p-n\ 

* /p-n\ * \m - n) 

m-n \m — n) m=n /^>\ 

\m) 

and finally 

* m(m — l)(m — 2) • • • (m — n + 1) 
( 9 ) "" = kp(P~D(p-2). ••(p-n+1) Xp 

p,m) 
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if we put 

™ T r e , . K.m = ( )pp,m = ( W 
\m/ \m/ 

The right side of equation (9) may be written as a Stieltjes in
tegral if we introduce with Hausdorff the function XPW defined 
as follows: Xp(iï is a step-function defined for 0 ^ / ^ l , with 
Xp(0) = 0, its points of discontinuity being for the values t — m/p 
(m = 0, 1, 2, • • • , p), where its jump has the value \p,m. This 
function will be completely defined by the additional condition 
2 X P ( 0 = X * ( * + 0 ) + X P ( * - 0 ) f o r 0 < / < l . From the first equation 
(7) we get X P ( 1 ) = MO and the conditions (8) show that xP(0 is a 
non-decreasing function. From (9) we obtain 

(.0) , . - f ' V ' *' ) tldxM 

= ƒ>*,«) + o(i). 
The remainder of the proof is similar to HausdorfFs. A theo

rem of E. Helly* insures the existence of a sub-sequence x«(0 
which converges to a monotonie function x{t). When p = q—>co, 
equation (10) reduces to (1) with x(*)=x(0« The relation 
Jltndxq(t)—>fltndx{t) follows from a theorem of Helly (loc. cit. 
pp. 288-289) or just as well from a known theorem on Riemann 
integrals as follows : 

f FdXq(t) = xi(l) - n f xMt«-Ldt 
Jo Jo 

-»• x ( i ) - « f xCO*"-1* = f <"<*x(fl • 
Jo Jo 

This proves the first part of the theorem. Using the fact that x W 
is uniquely defined at all its points of continuity by the set (1) 
and the condition x(0) = 0 , Hausdorff proved (loc. cit., pp. 225— 
226) that the whole sequence XPOO converges to a monotonie 
function xif) which solves the problem of moments. 

* E. Helly, Über lineare Funktionaloperationen, Sitzungsberichte der Wie
ner Akademie, vol. 121 Ha (1912), p. 286. 



76 I. J. SCHOENBERG [February, 

The second statement of the theorem concerning the solution 
of bounded variation is also readily proved. If we suppose the 
function %W of equations (1) to be of bounded variation, then 
xOO ==X1(0 — X2(0> with xKO and x2W both non-decreasing func
tions. In Hausdorff's notation (loc. cit., p. 231) we have 
Xp,m=X3?,1w--X2,

2
m and hence 

P P \ V 2 

/ , I Xp,w I ^ Z-^*>.«i "f" / A».m = Mo1 + Mo2, 
m = 0 m=0 m—0 

which proves the necessity of the condition (3). Conversely, if 
(3) o r 2 î = o |\p,m \<K holds for £—>oo , then the sequence Xv(f) 
is a sequence of uniformly bounded functions of uniformly 
bounded variations. Another theorem of E. Helly* insures 
the existence of a sub-sequence x«(0 converging to a function 
x{t) of bounded variation. Just as above, on making p = q—>co, 
equation (10) becomes (1) with xW = x{t) and the second part 
of the theorem is proved. Moreover, formula (10) and the same 
arguments used by Hausdorff for the previous case permit us 
to prove that the whole sequence X P ( 0 converges to a function 
x{t) of bounded variation satisfying the equations (1). 

THE UNIVERSITY OF CHICAGO 

* E. Helly, loc. cit., §6, Theorem 7 on p. 283. This theorem is a corollary of 
his first theorem used above. 


