NOTE ON DIOPHANTINE AUTOMORPHISMS*

```
BY LEONARD CARLITZ }
```

1. Introduction. Professor E. T. Bell \ddagger defines a diophantine automorphism of a form $f \equiv f\left(x_{1}, \cdots, x_{n}\right)$, where f is a homogeneous polynomial, to be a transformation of f into f^{h}, h an integer >1, by means of a substitution $X_{i}=X_{i}\left(x_{1}, \cdots, x_{n}\right)$, ($i=1, \cdots, n$), so that

$$
\begin{equation*}
f\left(X_{1}, \cdots, X_{n}\right)=f^{h}\left(x_{1}, \cdots, x_{n}\right) \tag{1}
\end{equation*}
$$

The first non-trivial instance of an algebraic phenomenon of this kind is due to Eisenstein, § who noticed that the discriminant of the general binary cubic possesses such an automorphism. Indeed, if we set

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1}^{2} x_{4}^{2}-3 x_{2}^{2} x_{3}^{2}+4 x_{1} x_{3}^{3}+4 x_{2}^{3} x_{4}-6 x_{1} x_{2} x_{3} x_{4:} \\
X_{1} & =3 x_{1} x_{2} x_{3}-x_{1}^{2} x_{4}-2 x_{2}^{3}=-\frac{1}{2} \frac{\partial f}{\partial x_{4}} \\
X_{2} & =2 x_{1} x_{3}^{2}-x_{1} x_{2} x_{4}-x_{2}^{2} x_{3}=\frac{1}{6} \frac{\partial f}{\partial x_{3}} \\
X_{3} & =x_{1} x_{3} x_{4}-2 x_{2}^{2} x_{4}+x_{2} x_{3}^{2}=-\frac{1}{6} \frac{\partial f}{\partial x_{2}} \\
X_{4} & =x_{1} x_{4}^{2}-3 x_{2} x_{3} x_{4}+2 x_{3}^{3}=\frac{1}{2} \frac{\partial f}{\partial x_{1}}
\end{aligned}
$$

it may be verified that $f\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=f^{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. This follows at once if it be noticed that $f(X)$ is the discriminant of the cubicovariant of the basic binary cubic, and further that all the invariants of the binary cubic are expressible in terms of the discriminant.

Cayley has given a different proof and at the same time a generalization \| of Eisenstein's result. If we set

* Presented to the Society, December 30, 1930.
\dagger National Research Fellow.
\ddagger This Bulletin, vol. 33 (1927), pp. 71-80.
§ Journal für Mathematik, vol. 27 (1844), p. 105.
|| A. Cayley, Collected Mathematical Papers, vol. 1, 1889, No. 15, Note sur deux formules données par MM. Eisenstein et Hesse, pp. 113-116.

$$
\begin{aligned}
& u(x)=x_{1}^{2} x_{8}^{2}+x_{2}^{2} x_{7}{ }^{2}+x_{3}{ }^{2} x_{6}{ }^{2}+x_{4}^{2} x_{5}^{2}+4 x_{1} x_{4} x_{6} x_{7}+4 x_{2} x_{3} x_{5} x_{8} \\
& -2 x_{1} x_{2} x_{7} x_{8}-2 x_{1} x_{3} x_{6} x_{8}-2 x_{1} x_{4} x_{5} x_{8} \\
& -2 x_{2} x_{3} x_{6} x_{7}-2 x_{2} x_{4} x_{5} x_{7}-2 x_{3} x_{4} x_{5} x_{6}, \\
& X_{i}=\frac{1}{2} \frac{\partial u}{\partial x_{i}}, \quad(i=1, \cdots, 8),
\end{aligned}
$$

then Cayley's result is $u(X)=u^{3}(x)$. In another paper,* Cayley proves that the Hessian of Eisenstein's quaternary quartic, that is, $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ above, is the product of a numerical constant into the square of f. However, no connection between this property and the automorphic property is indicated.

Another instance of (1) is furnished by the general symmetric determinant of order n :its adjoint is also symmetric and is equal to the $(n-1)$ st power of the original determinant. This is of course true of the general determinant. However the latter is quite trivial since the general determinant, regarded as a function of n^{2} independent variables, is composable, and clearly all composable forms have the automorphic property (1). It should be noticed that here again the automorphic transformation is expressed in terms of partial derivatives of the first order.

In this note we consider diophantine automorphisms characterized by this property. We assume a form f of degree k in n variables such that

$$
\left\{\begin{align*}
f\left(X_{1}, \cdots, X_{n}\right) & =\alpha f^{k-1}\left(x_{1}, \cdots, x_{n}\right), \tag{2}\\
X_{i} & =\sum_{j=1}^{n} c_{i j} \frac{\partial f(x)}{\partial x_{j}}, \quad\left|\frac{\partial X_{i}}{\partial x_{j}}\right| \not \equiv 0,
\end{align*}\right.
$$

where α and $c_{i j}$ are numerical. We prove two results.
(I) The transformation defined by the second of (2) is a Cremona transformation, and (but for a linear transformation) is of period two:

$$
\begin{equation*}
X_{i}(X)=\alpha f^{k-2} \sum_{j=1}^{n} \gamma_{i j} x_{j} . \tag{3}
\end{equation*}
$$

This result is a sort of converse to a result of L . Weisner, \dagger who shows that from a Cremona transformation of finite period a diophantine automorph may be deduced.

[^0](II) If $f\left(x_{1}, \cdots, x_{n}\right)$ is irreducible (in the field of rationals, say), then the Hessian of f is a constant multiplied into a power of f :
\[

$$
\begin{equation*}
H[f]=\beta f^{n(k-2) / k} \tag{4}
\end{equation*}
$$

\]

This second result shows the connection between the Cayley identities quoted above. From (4) we have as an immediate corollary that for a function satisfying (2) the degree, k, is a divisor of $2 n, n$ being the number of variables.
2. The Cremona Property. Let us write

$$
f_{j}=\frac{\partial f(x)}{\partial x_{j}}, \quad Y_{i}(x)=\sum_{j=1}^{n} c_{j i} f_{j} .
$$

Then since

$$
\frac{\partial}{\partial f_{i}}=\sum_{j=1}^{n} \frac{\partial X_{j}}{\partial f_{i}} \frac{\partial}{\partial X_{j}}=\sum_{j=1}^{n} c_{j i} \frac{\partial}{\partial X_{j}}
$$

we find that

$$
\begin{align*}
Y_{i}(X) & =\sum_{i} c_{j i} \frac{\partial f(X)}{\partial X_{j}}=\frac{\partial f(X)}{\partial f_{i}}=\alpha \frac{\partial}{\partial f_{i}} f^{k-1}(x) \\
& =\alpha \sum \frac{\partial f^{k-1}}{\partial x_{i}} \frac{\partial x_{j}}{\partial f_{i}}=\alpha(k-1) f^{k-2} \sum f_{j} \frac{\partial x_{j}}{\partial f_{i}} \tag{5}
\end{align*}
$$

But

$$
\sum x_{j} f_{j}=k f
$$

so that

$$
x_{i}+\sum f_{j} \frac{\partial x_{j}}{\partial f_{i}}=k \frac{\partial f}{\partial f_{i}}=k \sum \frac{\partial f}{\partial x_{j}} \frac{\partial x_{j}}{\partial f_{i}}=k \sum f_{j} \frac{\partial x_{j}}{\hat{c}^{s}}
$$

and

$$
x_{i}=(k-1) \sum f_{j} \frac{\partial x_{j}}{\partial f_{i}}
$$

Substituting into (5), we find
and

$$
\begin{equation*}
X_{i}(X)=\alpha f^{k-2} \sum \gamma_{i ;} x \tag{3}
\end{equation*}
$$

where $\left\|\gamma_{i j}\right\|=\left\|c_{i j}\right\|^{-1} \cdot\left\|c_{i j}\right\|$.
3. Proof of (4). It is evident that

$$
\left|\frac{\partial Y(X)}{\partial X}\right| \cdot\left|\frac{\partial X}{\partial x}\right|=\left|\frac{\partial Y(X)}{\partial x}\right|
$$

From this fact, and from the equations

$$
\begin{aligned}
\left|\frac{\partial Y(X)}{\partial X}\right| & =\left|c_{j i}\right| \cdot\left|\frac{\partial^{2} f(X)}{\partial X_{i} \partial X_{j}}\right|=c H[f(X)] \\
\left|\frac{\partial X}{\partial x}\right| & =\left|c_{i j}\right| \cdot\left|\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right|=c H[f(x)]
\end{aligned}
$$

where H denotes the Hessian constructed with respect to the variables indicated, we find

$$
c^{2} H[f(X)] H[f(x)]=\left|\frac{\partial Y(X)}{\partial x}\right|=\alpha^{n}\left|\frac{\partial\left(x_{i} f^{k-2}\right)}{\partial x_{j}}\right|
$$

The evaluation of this determinant presents no difficulty. Let us use the notation $\phi_{j}=\partial \phi / \partial x_{j}$, and let $\delta_{i j}$ denote the Kronecker delta. Then we may write

$$
\begin{aligned}
& \left|\frac{\partial\left(x_{i} \phi\right)}{\partial x_{j}}\right|\left|=x_{i} \phi_{j}+\phi \delta_{i j}\right| \\
& =-\left|\begin{array}{cccccc}
x_{1} \phi_{1}+\phi & x_{1} \phi_{2} & \cdots & x_{1} \phi_{n} & x_{1} \\
x_{2} \phi_{1} & x_{2} \phi_{2}+\phi & \cdots & x_{2} \phi_{n} & x_{2} \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot \\
x_{n} \phi_{1} & x_{n} \phi_{2} & \cdots & \cdots & x_{n} \phi_{n}+\phi & x_{n} \\
0 & 0 & \cdots & 0 & -1
\end{array}\right| \\
& =-\left|\begin{array}{llllr}
\phi & 0 & \cdots & 0 & x_{1} \\
0 & \phi & \cdots & 0 & x_{2} \\
\cdot & \cdot & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \phi & x_{n} \\
\phi_{1} & \phi_{2} & \cdots & \phi_{n} & -1
\end{array}\right|=-\{1,2, \cdots, n\}, \text { say } .
\end{aligned}
$$

Then we shall have

$$
\begin{aligned}
\{1,2, \cdots, n\} & =\phi\{2, \cdots, n\}-x_{1} \phi_{1} \phi^{n-1} \\
& =\phi^{2}\{3, \cdots, n\}-\left(x_{1} \phi_{1}+x_{2} \phi_{2}\right) \phi^{n-1} \\
& =-\phi^{n}-\left(x_{1} \phi_{1}+\cdots+x_{n} \phi_{n}\right) \phi^{n-1}=-(s+1) \phi^{n}
\end{aligned}
$$

if ϕ be homogeneous of degree s. Therefore

$$
\left|\frac{\partial\left(x_{i} f^{k-2}\right)}{\partial x_{j}}\right|=(k-1)^{2} f^{n(k-2)},
$$

and substituting in (6),

$$
c^{2} H[f(X)] H[f(x)]=\alpha^{n}(k-1)^{2} f^{n(k-2)} .
$$

If now we make use of the hypothesis that $f\left(x_{1}, \cdots, x_{n}\right)$ is irreducible we have immediately

$$
\begin{equation*}
H[f(x)]=\beta f^{n(k-2) / k} \tag{4}
\end{equation*}
$$

the exponent being found by comparing the degrees of both members.
4. Forms Not Satisfying (2). It is by no means necessary that a form f having the automorphic property satisfy (2). This is obvious if f be composable and of degree $\neq 3$. Furthermore simple examples exist of forms which are not composable. As an example we remark that
$\left(x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}\right)^{2}=\left(x_{1}{ }^{2}+x_{2}{ }^{2}-x_{3}{ }^{2}\right)^{2}+\left(2 x_{1} x_{3}\right)^{2}+\left(2 x_{2} x_{3}\right)^{2}$,
but, as is well known, $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}$ is not composable.
In another note I shall indicate the construction of a class of forms satisfying (1) but in general not (2); the forms are derived from invariant theory.

California Institute of Technology

[^0]: * Loc. cit., No. 54, Note sur les hyperdéterminants, pp. 352-355.
 \dagger This Bulletin, vol. 33 (1927), pp. 707-712.

