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ON REAL S Y M M E T R I C D E T E R M I N A N T S WHOSE 
PRINCIPAL DIAGONAL ELEMENTS ARE ZERO 

BY W. V. PARKER 

A paper by L. M. Blumenthal in this Bulletin* is concerned 
with the following theorem. 

If the symmetric determinant 
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with ra>0, (i, j = 1,2,3,4), i^j, is different from zero, and the 
complementary minors of four of the elements in the principal 
diagonal vanish, then the complementary minor of the remaining 
element does not vanish. 

The purpose of this note is to establish a more general the
orem from which the above is immediately obtainable. This 
theorem may be stated as follows. 

THEOREM 1. If the real symmetric determinant, D= |a^-|, of 
order five with au = 0, (i, j —1,2,3,4,5), has all five of its fourth-
order principal minors zero, then D vanishes. 

Since the elements of D are real, we may write 
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where a,b,c,d,x,y,z,u,v,w are either real or pure imaginary num
bers. The theorem is trivial if all elements of the first row are 
zero. We will suppose then that at least one element is different 
from zero and without loss of generality we may assume a 3^0. 

* This Bulletin, vol. 37 (1931), pp. 752-758. 
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If now we subtract b2/a2 times the second column from the 
third, e2/a2 times the second column from the fourth, and d2/a2 

times the second column from the fifth, and then transform the 
rows in the same way, D assumes the form 

— 2b2 x2 a2u2—b2y2—c2x' 

a2u2 — b2y2 — c2x2 —2c2y2 1 
( 1 ) 0 = — 

a2 
a2v2—d2x2—b2z2 a2w2—d2y2—c2z2 

a2v2 — d2x2 — b2z2 

a2w2—d2y2 — c2z2 

-2d2z2 

If we denote the fourth-order principal minors by Mh M2, 
M3, M±, MB, we have 

Mi = (xw + yv + zu) (xw + yv — zu) (xw — yv + zu) (xw — yv — zu), 

M2 = (bw + du + ev) (bw + du — cv) (bw — du + cv) (bw — du — cv), 

Mi = (aw + dy + cz) (aw + dy — cz) (aw — dy + cz) (aw — dy — cz), 

M4 = (av + dx + bz)(av + dx — bz)(av — dx + bz)(av — dx — bz), 

MB = (au + ex + by)(au + ex — by)(au — ex + by)(au — ex — by). 

If M3 = M^ = MB = 0, then A 2 = ( a ± ^ ) 2 , a2v2 = (dx±bz)2, and 
a2^2 = (^y + czyt Substituting these values in (1) we get 

(2) D 
(8bWd2x*yW) 

- 1 

± u 
+ lv 

± lu 

- 1 

+ lu. 

+ 1, 

+ 1« 

- 1 

= 2[(± 1„)(± U)(± U) + 1 ] ( - U2eH2x2y2z2)/a2, 

where ± l w i s + 1 or —1 according as a2u2 = (cx-{-by)2 or a2u2 

— (ex —by)2 and similarly for ±lv and ±lw. From this form 
it is evident that if b,c,d,x,y, or z is zero, D is zero and hence 
our theorem is true for this case. Let as assume now that b,e}d, 
xfy,z are all different from zero. Then in order that D be different 
from zero it is necessary that the above signs be taken all plus 
or one plus and two minus. Since Mi and M2 are even functions of 
u,v,w, we may take only positive square roots on both sides. 

CASE I. The three signs plus. In this case au = cx + by, av=dx 
+ bz, aw = dy+cz. Substituting these values in the expressions 
for Mi and M2 above we have 

Mi = — (dxy + cxz + byz)(16bcdx2y2z2)/aé, 

M2 = - (edx + bdy + bcz)(16b2e2d2xyz)/a*. 
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Since by supposition b,c,d,x,y,z are all different from zero, in 
order that Mi = M2 — 0 it is necessary that dxy + cxz + byz = 0 
and cdx + bdy + bcz = 0, from which it follows that c2x2-\-bcxy 
-f- 52̂ 2 = Q That is ex I(by) must be a complex cube root of unity, 
but this is impossible since ex/(by) is either real or a pure imag
inary number. Hence the theorem is true for this case. 

CASE I I . One sign plus and two minus. There are three possi
bilities here. We will carry the three through simultaneously 
indicating the corresponding steps by (1), (2), (3) for each case: 

/ au = ex + by, / au = ex — by, / au = ex — by, 

(1) < av = dx — bz, (2) \ av = dx + bz, (3) < av = dx — bz, 

^ aw = dy — cz, ^ aw = dy — cz, ^ aw = dy + cz. 

The corresponding expressions for Mi and M2 are 
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- byz)(16bcdx2y2z2)/a\ 

- byz)(16bcdx2y2z2)/a\ 

- cxz)(16bcdx2y2z2)/a4, 

- cdx)(16b2c2d2xyz)/a*, 

- cdx)(16b2c2d2xyz)/a4, 

- bdy)(16b2c2d2xyz)/a*. 

Since b,c,d,x,y,z are all different from zero, in order that Mi 
=-: M2 = 0 it is necessary that 

(1) c2x2 + bcxy + b2y2 = 0, 

(2) d2x2 + bdxz + b2z2 = 0, 

(3) d2y2 + cdyz + c2z2 = 0. 

None of these is possible for the same reason as in Case I. 
We have shown therefore that if M3 = M4 = Ms = 0 and D^O, 

then not both Mi and M2 are zero. Hence, if Mi = M2 = Mz 

= Me = Mb = 0,D vanishes. 
If the elements outside the principal diagonal of D are all dif

ferent from zero, we see from (2) that if ikf 3 = M4 =-M5 = 0 then 
the signs must be taken all minus or two plus and one minus in 
order for D to vanish. In each of these cases Mi = Af2 = 0. We 
may state, in this case, therefore the following corollary. 
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COROLLARY. If f our of the principal minors of D are zero and 
the fifth is not zero then D is not zero. 

As an immediate consequence of Theorem 1 we have also the 
following result. 

THEOREM 2. If D = | a$-,-| is a real symmetric determinant of or
der greater than four with au = 0, then if all fourth-order principal 
minors of D are zero, D vanishes. 

Any fifth-order principal minor of D is of the form of the 
determinant under Theorem 1 and hence is zero if all fourth-
order principal minors vanish. Hence all principal minors of 
orders four and five are zero and therefore the rank of D is three 
or less.* 

THEOREM 3. If D = | au\ is a real symmetric determinant of or
der n, n>5, with a« = 0, and M is any principal minor of D of 
order n — 1, then if all fourth-order principal minors of M are zero, 
D vanishes. 

By Theorem 2, the rank of M is three or less. We may suppose 
now that M is the minor in the upper left hand corner of D. 
When D is expanded according to the product of the elements of 
its last row and last column it is expressed as a sum of products 
of these elements by minors of M of order n — 2\. But all minors 
of M of order n — 2 are zero and hence D vanishes. 

MISSISSIPPI WOMAN'S COLLEGE 

* Bôcher, Introduction to Higher Algebra, p. 57, Theorem 2. 
f Bôcher, loc. cit., p. 29, Theorem 3. 


