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FREQUENCY LAWS SHOWING STABILITY WITH 
R E F E R E N C E TO T H E GEOMETRIC MEAN 

AND OTHER MEANS* 

BY E. L. DODD 

1. Stability with Reference to the Arithmetic Mean. The pur
pose of this paper is to extend to various means the conception 
of stability as developed by Levy f with reference to the arith
metic mean. The best known functions showing this stability, as 
mentioned by Levy, are the Gaussian or normal probability 
function and the Cauchy function (a/x)(a2+jc2) - 1 . For this 
stability, the probability function or distribution of the arithmet
ic mean must have essentially the same form as that of individ
ual variâtes. Indeed, in the Cauchy case, the distributions are 
identical. But in general, the distribution of the arithmetic mean 
contains the parameter n. 

Levy takes <j>{t) as a characteristic function, and writes 

(1) iKO = log 0(0 = - (co + cii) | * K 

where 

(2) co > 0, | a | è | Co tan T<X/2 | , 0 < a ^ 2 J = ( - 1)1/2 sgn t. 

If, now, Xi is an individual variate, and if Prob signifies 
probability that, then 

(3) Prob {x < Xi < x + dx) = f(x)dx, (i = 1, 2, • • • , n), 

where, if we use i in an exponent to signify (— 1)1/2, we write 

(4) ƒ(*) = ƒ(*, co, a, a) = — f er*°*4>(t)dt. 

Using F for the cumulative function, we find 

ƒ M 

f(x)dx. 
- 0 0 

* Presented to the Society, December 28, 1931. 
t Calcul des Probabilités, Chap. 6; Comptes Rendus, vol. 176 (1923), pp. 

1118-1122, and pp. 1284-1286. 
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If now 5 is the sum of n independent variâtes Xi} the log
arithm of the characteristic function of S is n\f/(t) ; and hence its 
probability function or density takes the form ƒ(x, nc0f nc±, a). 
For the arithmetic mean, A, it follows that nf{nx, nc0, nci, a) is 
the density of distribution. Hence 

(6) Prob {̂ 4 < u) = F(nu> nc^ nch a). 

2. Extension of Stability. To define* a mean Moin independent 
variâtes Yi} I shall suppose here that 

x = £(y) 

is a continuous increasing function of y. Its inverse y = d(x) will 
then exist, and we may set 

(7) M = e\- ttord]-
Ln i J 

I shall now regard the cumulative probability or frequency func
tion F as stable with reference to the general mean M, if from 

(8) Prob {Yi < v) = F[£(v), c0, d, a], 

we can conclude that 

(9) Prob {M < v} = F[n£(v), nc0, nch a]. 

A more general definition of stability might be framed, but the 
foregoing is adequate for this paper. 

To show that (8) and (9) are satisfied when M is defined by 
(7), we need only set 

(10) Xi = Z(Yi), u = it(v); Yi^diXi), v = d(u). 

Then, from (5) and (6), noting that £ is an increasing function, 
we have 

(11) Prob {Yi < v] = Prob {Xi < u) = F[u, c0, ch a]; 

(12) Prob {M < v) = Prob {A < u} = F[nu, nc0) nch a], 

* I defined a somewhat more general mean in my paper Functions of meas
urements under general laws of error, Skandinavisk Aktuarietidskrift, vol. 5 
(1922), p. 141. 
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3. Particular Means. The geometric mean G of n positive va
riâtes Yi is given by 

(13) G={YVY, Ynyi^ log G = — £ log F<; 
n i 

and thus (8) and (9) apply with M — G,£(v) =\ogv, v > 0 . We note 
in this case that u = £(v) =log v permits u to take on all real val
ues, although v is restricted to positive values. 

The cube root of the average cube of variâtes Ft- is a special 
case, with p = 3, of 

1 n 

(14) M = | B \llp sgn 5 , 5 = — £ | F< \* sgn F<, ƒ> > 0, 
w i 

where sgn F» = — 1, 0, + 1 , according as Yi is negative, zero, or 
positive. Here, in (14), Yi is not restricted to positive values. The 
case of p = 2 is a signed root-mean-square. For the general case 
(14), we take £(i;) = |u \p sgn v, to obtain (8), (9). 

4. Stability for Symmetrical Distributions. If in (1) we take 
ci = 0, c0 = c, then (4) becomes 

1 r0 0 

(15) f(x) = ƒ(*, c, a) = — I e~ct<x cos to*. 
7T Jo 

In this case, f( — x) =f(x), and the distribution is symmetrical, 
with mode at the origin. The further specialization a = l or 
a = 2, gives the Cauchy or the Gaussian distribution, respectively. 
In what follows we merely require, as before, 0<ce^2 , with 
c>0. 

We shall also introduce a total frequency function 

f(x)dx = 2 I f(x)dx, u ^ 0. 
-u J o 

Then if g(x, c, a, n) is the frequency density for the sum of n 
independent variâtes Xi, 

1 f00 

(17) g(x9 c, a, n) = — I e~nct<x cos txdt = n-llaf{n~llax, c, a), 
7T Jo 

as may be seen by a change of variables nta—ra. Then, passing 
to the arithmetic mean A, by changing x into nx, dx into ndx, 
we obtain 
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(18) Prob { | A | < u\ = T[nl~^u, c, a]. 

From the definition (16), it is seen that T[u, c, a] is an in
creasing function of u, a function, indeed, that approaches 
unity (certainty) when u approaches infinity. Thus, from (18), 
with 1 < a ^ 2 , and n>l, 

Prob { \A \<U) >T[U, C, a ] = P r o b { \Xi\<u}. 

Suppose, now, that when n measurements of a quantity have 
been made, we postulate a true value for the measured quantity. 
Sometimes this true value is actually ascertainable; for example, 
if ten balls have been drawn from an urn containing white and 
black balls, and w are found to be white, the ratio w/10 is a 
measurement of an ascertainable proportion of white balls in the 
urn. By translation, now, suppose the origin moved to the true 
value. Thus, if in the above urn 40% of the balls are white, 
X = w/10 — 40. T h e X ' s may now be called errors. The inequality 
obtained above, 

Prob { |̂ 4 | < « } > P r o b {\Xi\<u}, 

now tells us that the arithmetic mean A is more likely to fall in
side a fixed interval about the true value zero than is an indi
vidual measurement X»; and in this sense, A is more reliable 
than Xi when 1 <a^2. On the other hand, .4 is less reliable than 
Xi when 0 <a < 1. These facts regarding the arithmetic mean are 
not new. 

5. The Geometric Mean, with Symmetric Distribution. Let G 
be defined as in (13); but taking a positive number a, suppose 
that 

(19) Xi = log (Yi/a), (i = 1, 2, • • -, »), 

with Xi subject to (15). We have 

(20) log(G/a) = - 2 > g ( F < / a ) , 
n 

where log (G/a) =A in (18). I t follows that 

(21) Prob { | log (G/a) | < u) = T[nl~li"u, c, a], u ^ 0. 
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Then, with u = \og v as before, but now with v^l, since u^O, 

(22) Prob <— <G < av> = Tin1-"" log v, c, a]. 

If we further postulate that a is the true value, G is less 
reliable than an individual measurement F,-, if 0 < a < l , but 
more reliable, if K a g 2 , Moreover, with K a | 2 , if e > 0 is 
arbitrarily small, and z> = l + e, we may take n large enough so 
that it is asymptotically certain that G will be confined to an 
arbitrarily small interval about the true value a. 

6. Another Illustration. As an added requirement, let us sup
pose that in the definition of M in (7) the function £ is odd: 

(23) * ( - F < ) = - £ ( 7 , ) , « - t O = - { ( 0 ; 

tf(- XO = - 0(X;), 0 ( - «) = - ff(«). 

Then, from (10), the inequality |X»-|<w becomes | F* | O . 
Thus, if 

(24) Prob { | Yi | < v} = r[{(»), c, a], v ^ 0, 

it follows that 

(25) Prob { | M | < v} = r f » 1 - 1 ^ » ) , <;, a ] . 

Means of the form (14) are included here. 
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