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ON T H E CONTACT OF TWO SPACE CURVES* 

BY E. B. STOUFFER 

If two space curves C and C' have contact of order n at a 
point P , there exists a unique plane, called the principal plane, 
which passes through the common tangent and which has the 
property that the cones projecting the curves from any point Q 
of this plane have contact of a t least order w + 1 along the 
line PQ. This theorem is due to Halphen.f 

BompianiJ has shown in the general case where the principal 
plane is distinct from the common osculating plane that the 
contact of the projecting cones will be of at least order n + 2 
if Q is on a unique line passing through P and lying in the 
principal plane and of at least order n-\-3 if Q is a unique point 
on this line. The line and point are called by Bompiani the 
principal line and the principal point. 

Halphen proved his part of the theorem by cutting the two 
curves by a plane and finding the limiting position of the line 
joining the two points of intersection. Bompiani used properties 
of surfaces having certain orders of contact with the two curves. 
More recently Palozzi§ has obtained all parts of the theorem by 
means of the projective invariant of contact. 

I t is the purpose of the present paper to prove all three parts 
of the theorem by a single process which is both direct and 
elementary, and which has the further advantage that it may 
be easily extended to prove similar theorems in hyperspace. 

Let us assume the two curves C and C' have contact of order)) 
n(n>l) at a general point P . Let x, y, z represent the non-
homogeneous coordinates obtained from the projective homo
geneous coordinates Xl, X2, XZy X4 by means of the relations 

* Presented to the Society, April 9, 1932. 
t Journal de L'Ecole Polytechnique, vol. 28 (1880), pp. 25-27. 
t Memorie della Accademia di Bologna, Classe di Scienze Fisiche, (8), 

vol. 3 (1925-26), pp. 3-6. 
§ Rendiconti Lincei, (6), vol. 7 (1928), pp. 321-25. Also Atti del Congresso 

Internazionale dei Matematici, Bologna, vol. 4, 1928, pp. 385-88. 
|| If » = 1, the method of this paper will apply but the coefficients of x2 in 

the expressions for z in equations (1) and (2) must be retained in all the calcu
lations since the osculating planes at P are not common in this case. 
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If we choose the point of contact to be the origin, the common 
tangent to be the x-axis, and the common osculating plane to 
be the x^-plane, the equations of C and C may be put into the 
form 

y = l2Xî + J- lnXn + ln+lXn+l + ln+%X
n+2 + ln+z%n+* + • • • , 

(1) 

z = mz%z + • • • + mnx
n + wn + ix

n + 1 + wn+2xn+2 + • • • , 

for C and 
y = l2X*+ . • . + lnXn + ^+lXn+l + l^2Xn+2 + l^xn+Z + 

(2) 
z — mzxz + • • • + mnx

n + w„'+iin+1 + Wn+2#w+2 + • * * , 

for C'. Since we are taking P to be a general point on the two 
curves we shall assume Z2^0. Moreover, at least one of the in
equalities In+iT^ln+i, nhn+iT^m'n+i must hold if the order of 
contact is no higher than n. We shall for the present assume 
Wft+i^Wn+i. The special case in which ran+i = mn'+i will be 
discussed later. 

Let us now make a transformation of coordinates which shall 
involve merely the changing of the fourth vertex (0, 0, 0, 1) of 
the homogeneous coordinate system to a point whose coordin
ates are a, b, c, 1, where a, b, c are constants as yet undeter
mined. This transformation is expressed in terms of the non-
homogeneous coordinates by the equations 

x — bz y — cz z 
(3) X = , F = - , Z = 

1 — az 1 — az 1 — az 

The substitutions from (1) and (2) into the second equation 
of (3) give, respectively, 

(4) F = hx* + Ux* + • • • + Lnx
n + Ln+1x

n+1 + Ln+2x
n+* 

+ Ln+Zx"+* + • • • , 

(5) Y = hx2 + L*X* + • • • + LnX" + Zn'+l*n+1 + £n+2*n+2 

+ L:+ZX«+* + • • • . 
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(6) 

The identity of the coefficients of corresponding powers of x, 
less than #n+1, in these two equations is evident from the 
fact that they are formed in exactly the same manner from 
a, bf c and those coefficients of (1) and (2) which are identical. 

Furthermore, it is easily seen that 

Ln+\ = ln+i — cmn+i + • • • , 

Ln+\ = ln+l — Cmn+i + * * ' , 

Ln+2 = ln+2 — CMn+2 + ' * * , 

Ln+2 = ln+2 ~ Ctnn+2 + * * * , 

Ln+z = ln+z — cmn+z + ahwîn+i + • * * , 

Ln+i = ln+z — cmn'+* + ahm^i + • • • , 

where the terms omitted are identical for the corresponding 
coefficients of (4) and (5). 

In order to complete the transformation it is necessary to 
eliminate x by the introduction of X in equations (4) and (5). 
The substitutions from (1) and (2) into the first equation of 
(3) give, respectively, 

(7) X = x + azx
z + • • • + anx

n + an+1x
n+1 + an+2x

n+2 + • • • , 

(8) X = x + a3x
z + h anx

n + a^+1y
n+1 + a^2x

n+2 + • • • , 

where 

oin+i = — bm,n+i + • • • , 

«n+1 = — blfln+i + • • • , 
(9) 

oin+2 — — bmn+2 + amn+i + • • • , 
oin+2 = — bnin+2 + am^+1 + • • • , 

the terms omitted in (9) being identical for corresponding coef
ficients of (7) and (8). 

In order to eliminate successive powers of x from (4) it is 
only necessary to multiply the square of both sides of (7) by 
the proper factor and subtract from (4), then multiply the cube 
of both sides of (7) by the proper factor and subtract from the 
result, and continue this process as long as desired. In the same 
manner, successive powers of x may be eliminated from (5) by 



418 E. B. STOUFFER [June, 

means of (8). The results of these eliminations have the form 

(10) Y = X2X
2 + • • • + \nX" + \n+lX«+i + Xn+2X*+2 

+ Xn+3X»+3 + • • • , 

(11) Y = X2X
2 + • • • + \nX" + Xn'+iXw+1 + XW'+2X»+2 

+ X»'+3X"+3 + • • • . 

The fact that the coefficients of corresponding powers of X, 
less than Xn+l, are equal is evident since a transformation of 
coordinates will not change the order of contact. The fact may 
also be easily seen analytically. Furthermore the analytical 
process shows at once that 

Ln+\ + • * ' , Xn+1 == Z/n+i+ ' • * , 

Ln+2 — 2£2«n+l + * ' * , Xn+2 = Lw
/a.2~"2/2ÛJn_|.i+ * • • , 

Ln+s — 2han42 — 3(/3 — cniz)an+i + • • • , 

Ln+z — 2hoùn+2 ~ 3(/3 — cm%)al+\ + • • • , 

where as before the terms omitted are identical for the corre
sponding coefficients of (10) and (11). 

The three parts of the theorem now follow immediately. If 
we give c the unique value imposed by putting Xn+i=Xn+i, 
the cones projecting C and C' from the fourth vertex of our new 
coordinate system have contact of at least order n + 1. More
over, since a and b are still arbitrary the fourth vertex may be 
at any point in a unique plane, the principal plane, which con
tains the two vertices (1, 0, 0, 0) and (0, 1, 0, 0) of our coordi
nate system, and therefore the tangent line at P to C and C'. 

If we give b the unique value imposed by putting also 
Xn+2 = Xn+2» the projecting cones have contact of at least order 
n + 2 and the point of projection is any point on a line through 
P , the principal line. 

Finally, if we give a the unique value imposed by putting 
also Xn+3=Xn+3, the projecting cones have contact of at least 
order n + 3 and the point of projection is a fixed point, the 
principal point. 

In the special case where mn+i = wn'+i the above process shows 
that the fourth vertex cannot be so located as to make the 
cones projecting C and C' from it have contact of order n + 1. 
However, it is evident at once that under this condition the 

(12) 

Xn+l = 

Xn+2 = 

Xn+3 = 

Xn+3 = 



I932-] RECTIFIABILITY IN METRIC SPACES 419 

cones projecting C and C" from (0, 0, 1, 0) have contact of at 
least order n + 1. Moreover, by changing this vertex to the point 
(a, b, 1,0) it is easily shown by a method similar to that used in 
the general case that the cones projecting C and C' from any 
point in the osculating plane have contact of order n + 1. In 
other words, this special case arises when the principal plane 
coincides with the osculating plane. 

T H E UNIVERSITY OF KANSAS 

ON RECTIFIABILITY IN M E T R I C SPACES 

BY W. A. WILSON 

1. Introduction. In Menger's studies in metrical geometry* 
considerable attention is given to the rectification of the simple 
arc and various definitions of the length of such an arc are dis
cussed. With the definition of arc-length it is then possible to 
give conditions for the "Konvexifizierbarkeit" of a compact 
metric space (p. 96) and for the existence of a geodetic arc in a 
compact metric space (p. 492). Both theorems involve the as
sumption of the existence of a rectifiable arc between each pair 
of points. I t is intended in this paper to show that these results 
and some others are due to space properties which are of a more 
general nature, at least formally, and which suggest possible 
further studies. 

2. Intrinsic Distance. If a and b are two points of a metric 
space Z, we let ab denote the distance between them. A finite 
set of points {a,i) such that a0 = a, an = b, and every aiai+i<h 
will be called a 6-chain from a to b, and aai+aia2 + • • -+an-ib 
will be called its length. If we set h(a, b) equal to the lower 
bound of the lengths of all S-chains from a to &, it is clear that 
this number exists if there is any such chain, that it is greater 
than or equal to ab, and that it increases monotonely as S—*0. 
The upper bound of h(a, b) for all values of S is called the 
intrinsic distance] from a to & and is denoted by I (a, b). 

* Untersuchungen uber allgemeine Metrik, Mathematische Annalen, vol. 
100, pp. 75-163 and vol. 103, pp. 466-501. See also Annals of Mathematics, 
vol. 32, pp. 739-746. 

f This turns out to be essentially the same thing as Menger's "geodetic dis
tance" loc. cit., p. 492. See §§4 and 7 below. 


