an examination of some cut sets of space*

BY C. H. HARRY

Part I

The purpose of this paper is to examine some pairs of points which are cut sets of a locally connected, locally compact, separable, and connected metric space S which has no single cut point. Under such an hypothesis the following statement will be proved.

If L is the set of all points (x) such that x together with some point y_{x} separates two fixed points a and b of the space S, then $L+a+b$ is closed and compact. \dagger

By the pair (x, y) separating a and b is meant that there exists at least one separation $S_{a}+S_{b}=S-x-y$ such that no point of S_{a} is a point or limit point of S_{b} and no point of S_{b} is a limit point of S_{a}, where $a \subset S_{a}$ and $b \subset S_{b}$.

Two properties of S used in the proof are the following:
I. Between a and b there exists at least one pair of arcs T_{x} and T_{y} having just their end points a and b in common. \ddagger
II. If X is any closed set, every component of $S-X$ is an arcwise connected open set with at least one limit point in $X . \S$

Properties of simple arcs which are used are the following:
III. If x is any point of an arc $a b$, then $a b$ may be written as the sum of two arcs $a x$ and $x b$ having just x in common.
IV. The points of an arc $a b$ may be ordered. If it is assumed that a precedes $b, a \propto b$, the ordering gives the following relations:

[^0]A point x precedes a point $y, x \propto y$, if and only if $x \subset a y$ and $y \subset x b$, where $a b$ is written first as the sum of the arcs $a y$ and $y b$ and again as the sum $a x+x b$; if $x \propto y$, then y does not precede x; if $x \propto y \propto z$, then $x \propto z$.
V. If K is any closed set and $a b$ any arc, the product $K \cdot a b$ has a last point on $a b$.
VI. If $\sum_{1}^{\infty} x_{i}$ is any monotonic plus* set of points on an $\operatorname{arc} a b$ with limit point p and z is any point of the subarc $a p=a z+z p$ of $a b$, then $z p$ contains all but a finite number of the points $\sum_{1}^{\infty} x_{i}$.

The next lemma is of importance in fixing the pairs (x, y).
Lemma. If T_{x} and T_{y} are any two arcs from a to b having just their end points a and b in common and (x, y) is any pair of points separating a and b, then x is contained in one arc and y in the other.

Proof. The assumption that one of the points is not contained in one of the arcs and the other point contained in the remaining arc easily leads to a contradiction, for then one of the arcs, say T_{x}, would contain neither x nor y. Thus, $T_{x} \subset S-x-y$, which is impossible since the pair (x, y) separates a and b while T_{x} is a connected set containing both a and $b . \dagger$

Since a simple arc is a compact set of points, the proof that L is compact results immediately from the fact that $L \subset T_{x}+T_{y}$. Also, by choosing the order on T_{x} and T_{y} such that $a \propto b$ on both, a partial ordering of $L+a+b$ is established, e.g., a subset Q of points x of L is said to be monotonic if it is monotonic with respect to the order of T_{x}. As the point y also belongs to L the arcs T_{x} and T_{y} form a division of L into two parts $H_{x}=T_{x} \cdot L$ and $H_{y}=T_{y} \cdot L$. For the proof that $L+a+b$ is closed it will be assumed that a limit point p of L does not belong to $L+a+b$ and shown that this leads to a contradiction. Without loss it may be supposed that p is a limit point of a monotonic plus set of points $\sum_{1}^{\infty} x_{i}$ of H_{x}. Two main cases then arise.

[^1]Case I. The corresponding set $\sum_{1}^{\infty} y_{i}$ of points y_{i}, which together with x_{i} separate a and b, consists of a finite number of distinct points.

If this be true, then an infinite number of the points $\sum_{1}^{\infty} x_{i}$ must be paired with one of the points of $\sum_{1}^{\infty} y_{i}$. Suppose that the pairs ($x_{n_{i}}, y_{k}$), where $i=1,2,3, \cdots$, separate a and b and the $x_{n_{i}}$'s are so labeled as to be monotonic. Now the pair (p, y_{k}) does not separate a and b for p is not a point of $L+a+b$. Hence, if C is the component of $S-p-y_{k}$ containing a, then C contains b. But, from Property II, a simple arc T, contained in C, exists from a to b. Writing $T_{x}=a p+p b$ and using Property V, we see that the $\operatorname{arc} T$ has a last point u on $a p$. Since $u \neq p$ the subarc $u p$ of $a p$ contains all but a finite number of the points of $\sum_{i=1}^{\infty} x_{n_{i}}$, Property VI. Thus, some i exists such that $x_{n_{i}} \subset u p-u$. However, this is impossible for then T would be a connected set containing both a and b and lying within $S-x_{n_{i}}-y_{k}$.

Since Case I leads to a contradiction there is left Case II.
CASE II. $\sum_{1}^{\infty} y_{i}$ consists of an infinite number of distinct points.
By choosing the x_{i} 's so that the corresponding y_{i} 's are monotonic on T_{y}, Case II may be divided into four parts:
A. The y_{i} 's are monotonic plus with limit point $q \neq b$.
B. The y_{i} 's are monotonic minus with limit point $q \neq a$.
C. The y_{i} 's are monotonic plus with limit point $q=b$.
D. The y_{i} 's are monotonic minus with limit point $q=a$.

Case II A. Exactly as before, the component C of $S-p-q$ containing b contains a since p is not a point of $L+a+b$. Also, an arc T from a to b exists such that $T \subset C$. Writing $T_{x}=a p+p b$ and $T_{y}=a q+q b$, then, just as in Case I, we see that the arc T has a last point u on $a p$ and a last point v on $a q$. Likewise, from Property VI, the subarc $u p$ contains all but a finite number of the points $\sum_{1}^{\infty} x_{i}$ and the subarc $v q$ contains all but a finite number of the points $\sum_{1}^{\infty} y_{i}$. That is to say, there exists a number K such that $T \subset S-x_{i}-y_{i}$ if $i>K$. But this is impossible since T is a connected set containing both a and b.

Case II B. With exactly similar reasoning to that of Case II A it may be shown that this case again leads to a contradiction.

There remain Cases II C and D , the latter of which will be treated next.*

Case II D. From the fact that an arc minus its end point is a connected set it follows that $a x_{1}-x_{1} \subset S_{a_{i}}$ for every i, where $T_{x}=a x_{1}+x_{1} b$ and $S-x_{i}-y_{i}=S_{a_{i}}+S_{b_{i}}$, a separation of $S-x_{i}-y_{i}$ containing a and b respectively. Thus, if z is a point of $a x_{1}-x_{1}$ $-a$ the pairs $\left(x_{i}, y_{i}\right)$ separate z and b as well as a and b. Also, as $z \neq a$, the results of Case II B may be applied to the effect that the pair (a, p) separates z and b. (See also the footnote below.) It will be shown that Case II D contradicts this result.

Clearly the pair (a, p) separates x_{1} and b as well as z and b. However, since p is not a point of $L+a+b$, the component C of $S-p-y_{1}$ containing a must contain b. But as the subarc $a p$ of T_{x} minus its end point p is a connected set lying in $S-p-y_{1}$, it follows that the point x_{1} belongs to C. Thus a simple $\operatorname{arc} T$, contained in C, exists from x_{1} to b. Obviously T does not contain a, for then the subarc of T from a to b would lie in $S-x_{1}-y_{1}$. Hence $T \subset S-a-p$, which is impossible since the pair (a, p) separates x_{1} and b. We have left then Case II C.

Case II C. For this case consider a compact region V around p such that the closure \bar{V} of V is contained in $S-T_{y}$. Just as in Case II D the component C_{i} of $S-p-y_{i}$ containing a contains both x_{i} and b, for p is not a point of $L+a+b$. Thus, for every i an arc T_{i} exists from x_{i} to b and lies within $S-p-y_{i}$. As V contains all the x_{i} 's but a finite number let it be assumed that the x_{i} 's used from now on are so chosen that $x_{i} \subset V$. Using the property that the boundary of $V, F(V)$, is closed, we see that there exists a first point q_{i} of T_{i}, in the direction from x_{i} to b such that $q_{i} \subset F(V)$. Thus, the subarc $N_{i}=x_{i} q_{i}$ of T_{i} lies entirely within V except for its end point q_{i} on $F(V)$.

Definition. The limit superior N of a collection of sets $\left(N_{i}\right)$ is the set of all points x, such that if R is any region containing x, R contains points from an infinite number of the sets N_{i}. The limit inferior M of the collection (N_{i}) is the set of all points y, such that if U is any region containing y, then U contains points from all but a finite number of the sets N_{i}. The collection (N_{i}) is said to be convergent and have limit $K=N$ if $N=M$.

[^2]From the fact that V is compact and N_{i} is a continuum, the theorems on infinite collections of sets may be used to choose a sub-collection ($N_{v_{i}}$) of (N_{i}) which is convergent, whose limit N is a continuum, and such that the points $x_{v_{i}}$ are monotonic on T_{x}.

The only point which N has in common with T_{x} is p, as is seen in the following manner. If $N \cdot a p$ contained points other than p, let such a point be z. Writing $a p=a z+z p$ and using Property VI we see that $z p$ contains all but a finite number of the points $x_{v_{i}}$. Also, if $j>k, N_{j}$ does not contain x_{k}, for if it did we could write $a p=a x_{j}+x_{j} p$ and then the arcs $a x_{j}$ and T_{j} would contain an arc from a to b which would contain neither x_{j} nor y_{j}. Hence, for n so large that $x_{v_{n}} \subset z p-z$ and $S_{a_{v_{n}}}+S_{b_{n}}$, a separation of $S-x_{v_{n}}-y_{v_{n}}$, the point z lies in $S_{a_{v_{n}}}$ while $\sum_{j=n+1}^{j=\infty} N_{v_{j}} \subset S_{b_{v_{n}}}$. But this is impossible since z is a limit point of this latter sum.

The assumption that $N \cdot p b$ contains points other than p, where $p b$ is the remaining subarc of T_{x}, leads to a contradiction in a similar manner. Supposing that $z \subset N \cdot(p b-p)$, it is clear that every pair $\left(x_{i}, y_{i}\right)$ separates a and z as well as a and b. From the note to Case IIB the pair (p, b) also separates a and z. If $S_{a}+S_{z}$ be a separation of $S-p-b$ containing a and z respectively, every one of the sets ($N_{v_{i}}-b$) is contained in S_{a}, for $N_{i}-b$ is connected and $\sum_{1}^{\infty} x_{v_{i}} \subset S_{a}$. But this is impossible since a limit point of $\sum_{1}^{\infty} N_{v_{i}}$ is contained in S_{z}. Thus $N \cdot T_{x}=p$.

As \bar{V} is compact and $F(V)$ is closed, the points $q_{v_{i}}$ have a limit point q contained in $F(V)$. Thus, since $q \subset F(V), q \neq p$, that is, q is not a point of T_{x} or T_{y}. Let U be a connected region containing q such that $\bar{U} \subset S-T_{x}-T_{y}$. As q is a limit point of $\sum_{1}^{\infty} q_{v}$, some m exists such that $q_{v_{m}} \subset U$. Since the arc $N_{v_{m}}$ does not contain p it has a last point w on $a p$. By Property VI the subarc $w p$ of $a p$ contains all but a finite number of the points x_{i}. Choose $x_{v_{n}}$ such that $x_{v_{n}} \subset w p-w$ and $n>m$. Since the $x_{v_{i}}$'s are monotonic, the subarc $a x_{v_{m}}$ of T_{x} is contained within $S-x_{v_{n}}-y_{v_{n}}$ as are also $N_{v_{m}}$ and U. From the preceding paragraph $N \subset S-x_{i}-y_{i}$. Likewise, the subarc $p b$ of T_{x} is also contained in $S-x_{i}-y_{i}$. Hence, $G=a x_{v_{m}}+N_{v_{m}}+U+N+p b$ lies within $S-x_{v_{n}}-y_{v_{n}}$. But this is impossible since G is a connected set containing both a and b while the pair $\left(x_{v_{n}}, y_{v_{n}}\right)$ separates a and b.

Thus the theorem is established that $L+a+b$ is closed and compact. The assumption need not be made that S has no cut
point in general but merely that no single point x separates a and b. Under this latter assumption the arcs T_{x} and T_{y} exist.

Part II

The second part of this paper treats the following theorem:
If G is any collection of closed, mutually exclusive and nonseparated sets X separating any two fixed points a and b of a connected and locally connected, separable metric space S, then the elements of G are ordered.* Further, any infinite monotonic subcollection $\left(X_{i}\right)$ of G is convergent and has a non-vacuous limit M which separates a and b if $M \subset S-a-b$.

Definition. By non-separated is meant that if X_{i} and X_{j} are any two elements of G and $S_{a_{i}}+S_{b_{i}}$ is.a separation of $S-X_{i}$, the set X_{j} is contained entirely within $S_{a_{i}}$ or $S_{b_{i}}$.

The ordering of G is defined as follows: X_{i} is said to precede $X_{j}, X_{i} \propto X_{j}$, if $X_{j} \subset S_{b_{i}}$. Some consequences of this definition are: either $X_{i} \propto X_{j}$ or $X_{j} \propto X_{i}$; if $X_{i} \propto X_{j}, X_{j}$ does not precede X_{i}; if $X_{i} \propto X_{j} \propto X_{k}$, then $X_{i} \propto X_{k}$.

Suppose that $\left(X_{i}\right)$ is any infinite monotonic plus collection of sets X_{i}, that is, if $S_{a_{i}}+S_{b_{i}}$ is a separation of $S-X_{i}$ then $\sum_{k=1}^{i-1} X_{k}$ $\subset S_{a_{i}}$ while $\sum_{k=i+1}^{\infty} X_{k} \subset S_{b_{i}}$. From this it is easily seen that no point of the limit superior of $\left(X_{i}\right)$ is contained in any $S_{a_{i}}$ or X_{i}, for that point would then be a limit point of $S_{b_{i}}$. It will be shown first that the limit superior X of $\left(X_{i}\right)$ is non-vacuous. If $S_{a}=\sum_{1}^{\infty} S_{a_{i}}$ and $S_{b}=\prod_{1}^{\infty} S_{b_{i}}$, it is easily seen that $S_{a} \cdot S_{b}=0$, for otherwise some i would exist such that $S_{a_{i}} \cdot S_{b_{i}}$ would not be vacuous. Now $S=S_{a}+S_{b}$, for if z is a point of S, either z is a point of some $X_{i} \subset S_{a_{i+1}} \subset S_{a}$ or not. If not, either z is contained in every $S_{b_{i}}$, that is, $z \subset S_{b}$, or, since z is not contained in $\sum_{1}^{\infty} X_{i}$, some n exists such that $z \subset S_{a_{n}} \subset S_{a}$. Now $S_{a_{i}}$ is an open set, for if a point $p \subset S_{a_{i}}$, since X_{i} is closed, a connected region R exists such that $p \subset R \subset S-X_{i}$. That is, $R \subset S_{a_{i}}$, and hence, since the sum of any number of open sets is again an open set, S_{a} is open. On the assumption that $\lim \sup \left(X_{i}\right)=X=0$, no point of S_{b} is a limit point of $\sum_{1}^{\infty} X_{i}$. Thus, if p is a point of S_{b}, a connected region R exists such that $p \subset R \subset S-\sum_{1}^{\infty} X_{i}$. As p is contained in every $S_{b_{i}}$, it follows that R is also. Therefore, S_{a} and S_{b} are

[^3]mutually exclusive open sets containing a and b respectively. But two mutually exclusive open sets are mutually separated, so that the assumption that $X=0$ leads to the contradiction that S is not connected.

The supposition that (X_{i}) is not convergent again leads to a contradiction. For if (X_{i}) is not convergent, an infinite subcollection ($X_{n_{i}}$) of the X_{i} 's exists such that $\lim \sup \left(X_{i}\right)=X$ $\neq \lim \sup \left(X_{n_{i}}\right)=N$. Choose the $X_{n_{i}}$'s such that they are monotonic and form $S_{a}=\sum_{1}^{\infty} S_{a_{n i}}$ and $S_{b}=\prod_{1}^{\infty} S_{b_{n i}}-N$. Just as before S_{a} and S_{b} are mutually exclusive open sets whose sum is $S-N$. However, this is impossible since $X-N \neq 0$ and is contained in S_{b} while $\sum_{1}^{\infty} X_{i} \subset S_{a}$ (given any X_{i} an $X_{n_{i}}$ exists such that $X_{i} \propto X_{n_{i}}$, that is, $X_{i} \subset S_{a_{n i}} \subset S_{a}$). Thus we see that the collection (X_{i}) is convergent.

Since every monotonic collection is either monotonic plus or monotonic minus, an interchange of a and b will take care of the negative case. It merely remains to show that the limit M of (X_{i}) separates a and b if $M \subset S-a-b$. Assuming that the collection $\left(X_{i}\right)$ is monotonic plus, and forming as before $S_{a}=\sum_{1}^{\infty} S_{a_{i}}$ and $S_{b}=\prod_{1}^{\infty} S_{b_{i}}-M$, we see that the sets S_{a} and S_{b}, being mutually exclusive open sets whose sum is $S-M$, form a separation of $S-M$. Also, as neither a nor b was contained in $M, a \subset S_{a}$ and $b \subset S_{b}$.

The Johns Hopkins University

[^0]: * Presented to the Society, September 9, 1931.
 \dagger This result is analogous to the theorem of G. T. Whyburn, this Bulletin, vol. 33 (1927), p. 685, to the effect that if, in any locally connected and metric continuum S, K is the set of all points separating two fixed points a and b, then $K+a+b$ is closed and compact. See also R. L. Wilder, this Bulletin, vol. 34 (1928), p. 649.
 \ddagger See G. T. Whyburn, Proceedings of the National Academy of Sciences, vol. 13 (1927), pp. 31-38; and W. L. Ayres, American Journal of Mathematics, vol. 51 (1929), pp. 577-594. For a short proof of this theorem see G. T. Whyburn, this Bulletin, vol. 37 (1931), p. 429.
 § R. L. Moore, Mathematische Zeitschrift, vol. 15 (1922).

[^1]: * The collection $\sum_{1}^{\infty} x_{i}$ is said to be monotonic plus if $x_{i} \propto x_{i+1}$ for each i. The collection is said to be monotonic minus provided $x_{i+1} \propto x_{i}$ for each i.
 \dagger From now on it will be assumed that one pair of the arcs T_{x} and T_{y} has been fixed and that the points (x, y) have been so named that $x \subset T_{x}$ and $y \subset T_{y}$.

[^2]: * The results of Cases II A and B could also be stated: If $\sum_{1}^{\infty} x_{i}$ and $\sum_{1}^{\infty} y_{i}$ are each monotonic with limit points p and q, respectively, where $(p+q) \cdot(a+b)=0$, then the pair (p, q) separates a and b.

[^3]: * For references on the ordering of the elements of G see G. T. Whyburn, Non-separated cuttings of connected point sets, Transactions of this Society, vol. 33 (1931).

